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Part I
Self-Adjoint ODEs
§1 Fourier Series

§1.1 Periodic Functions

Definition 1.1 (Periodic function)
A function f(x) is periodic if f(x+ T ) = f(x) for all x, where T is the period.

For example, simple harmonic motion is periodic. In space, we consider the wavelength
λ = 2π

k , and the (angular) wave number k is defined conversely by k = 2π
λ .

Consider the set of functions

gn(x) = cos nπx
L

; hn(x) = sin nπx
L

where n ∈ N. These functions are periodic on the interval 0 ≤ x < 2L with period
T = 2L. Recall that

cosA cosB = 1
2

(cos(A−B) + cos(A+B));

sinA sinB = 1
2

(cos(A−B) − cos(A+B));

sinA cosB = 1
2

(sin(A−B) + sin(A+B))

Definition 1.2 (Inner product)
We define the inner product for two periodic functions f, g on the interval 0 ≤ x <
2L.

〈f, g〉 =
∫ 2L

0
f(x)g(x) dx a

aWe will generalise this definition later when we use other eigen functions.

The functions gn and hn aremutually orthogonal on the interval [0, 2L) with respect to the
inner product above.

〈hn, hm〉 =
∫ 2L

0
sin nπx

L
sin mπx

L
dx
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= 1
2

∫ 2L

0

(
cos (n−m)πx

L
− cos (n+m)πx

L

)
dx

= 1
2
L

π

[ 1
n−m

sin (n−m)πx
L

− 1
n+m

sin (n+m)πx
L

]2L

0
= 0 when n 6= m

If n = m, we have

〈hn, hn〉 =
∫ 2L

0
sin2 nπx

L
dx = 1

2

∫ 2L

0

(
1 − cos 2πnx

L

)
dx = L (n 6= 0)

Thus,

〈hn, hm〉 =
{
Lδnm n,m 6= 0
0 nm = 0

(1.1)

Similarly, we can show

〈gn, gm〉 =


Lδnm n,m 6= 0
0 exactly one ofm,n is zero
2L n,m = 0

(1.2)

and

〈hn, gm〉 = 0 (1.3)

Now, we assert that {gn, hn} form a complete orthogonal set; they span the space of
all ‘well-behaved’ periodic functions of period 2L. Further, the set {gn, hn} is linearly
independent.

§1.2 Definition of Fourier series

Since gn, hn span the space of ‘well-behaved’ periodic functions of period 2L, we can
express any such function as a sum of such eigenfunctions.

Definition 1.3 (Fourier series)
The Fourier series (FS) of f is

f(x) = 1
2
a0 +

∞∑
n=1

an cos nπx
L

+
∞∑
n=1

bn sin nπx
L

(1.4)

where an, bn are constants such that the right hand side is convergent for all xwhere
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f is continuous.a
aNote does not require differentiability unlike a Taylor series.

At a discontinuity x, the Fourier series approaches the midpoint of the supremum and
infimum of the function in a close neighbourhood of x. That is, we replace the left hand
side with

1
2
f(x+) + 1

2
f(x−)

Let m > 0, and consider taking the inner product 〈hm, f〉 and substituting the Fourier
series of f .

〈hm, f〉 =
∫ 2L

0
sin mπx

L
f(x) dx

=
∫ 2L

0
sin mπx

L

(
1
2
a0 +

∞∑
n=1

an cos nπx
L

+
∞∑
n=1

bn sin nπx
L

)
dx by substituting eq. (1.4)

= 〈hm, bmhm〉 by orthogonality relations eqs. (1.1) to (1.3)
= Lbm

Thus,
bn = 1

L
〈hn, f〉 = 1

L

∫ 2L

0
sin nπx

L
f(x) dx

an = 1
L

〈gn, f〉 = 1
L

∫ 2L

0
cos nπx

L
f(x) dx

(1.5)

Note. • Note this includes the a0 case so 1
2a0 is the average of the function.

• Note further that wemay integrate over any range as long as the total length is one
period, 2L. Notably, we may integrate over the interval [−L,L].

• Think of FS as a decomposition into harmonics. Simplest FS are sine and cosine
function, e.g. pure mode sin 3πx

L , has b3 = 1, bn = 0 ∀ n 6= 3.

Example 1.1 (Sawtooth wave)
Consider the sawtooth wave; defined by f(x) = x for x ∈ [−L,L) and periodic else-
where.
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Here, an = 1
L

∫ L
−L x cos nπxL dx = 0 as x odd and cos is even.

bn = 1
L

∫ L

−L
x sin nπx

L
dx

= 2
L

∫ L

0
x sin nπx

L
dx as the function we are integrating is even

= −2
nπ

[
x cos nπx

L

]L
0

+ 2
nπ

∫ L

0
cos nπx

L
dx

= −2L
nπ

cosnπ + 2L
(nπ)2 sinnπ

= 2L
nπ

(−1)n+1

So the sawtooth FS is

f(x) = 2L
π

∞∑
n=1

(−1)n+1

n
sin nπx

L
(1.6)

= 2L
π

(
sin πx

L
− 1

2
sin 2πx

L
+ 1

3
sin 3πx

L
+ . . .

)
which is slowly convergent.
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Note. As n → ∞

1. FS approx improves (convergent when cts)

2. FS → 0 at x = L i.e. midpoint of discontinuity

3. FS has a persistent overshoot at x = L (approx 9% knows as Gibbs phenomenon,
see Sheet 1, Q5).

§1.3 Dirichlet conditions

The Dirichlet conditions are sufficiency conditions for a “well-behaved” function, that
will imply the existence of a unique Fourier series.

Theorem 1.1
If f(x) is a bounded periodic function of period 2Lwith a finite number of minima,
maxima and discontinuities in [0, 2L), then the Fourier series converges to f at all
points at which f is continuous, and at discontinuities the series converges to the
midpoint.

Note.

1. These are some relatively weak conditions for convergence, compared to Taylor
series. However, this definition still eliminates pathological functions such as 1

x ,
sin 1

x , 1(Q) and so on.

2. The converse is not true; for example, sin 1
x does in fact have a Fourier series.

3. The proof is difficult and will not be given.

The rate of convergence of the Fourier series depends on the smoothness of the func-
tion.

Theorem 1.2
If f(x) has continuous derivativesa up to a pth derivative which is discontinuous,
then the Fourier series converges with order O(n−(p+1)) as n → ∞.
aNote it needs to be continuous on R not on [0, 2L), i.e. it needs to be continuous on [0, 2L) and

f (n)(0) = f (n)(2L) as it’s periodic.

Example 1.2 (p = 0)
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Consider the square wave (Sheet 1, Q5)

f(x) =
{

1 0 ≤ x < 1
−1 −1 ≤ x < 0

Then the Fourier series is

f(x) = 4
∞∑
m=1

sin(2m− 1)πx
(2m− 1)π

(1.7)

Example 1.3 (p = 1)
Consider the general ‘see-saw’ wave, defined by

f(x) =
{
x(1 − ξ) 0 ≤ x < ξ

ξ(1 − x) ξ ≤ x < 1

and defined as an odd function for −1 ≤ x < 0. The Fourier series isa

f(x) = 2
∞∑
m=1

sinnπξ sinnπx
(nπ)2 (1.8)
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For instance, if ξ = 1
2 , we can show that

f(x) = 2
∞∑
m=1

(−1)m+1 sin(2m− 1)πx
((2m− 1)π)2

aThis is an important exercise you should do at home.

Example 1.4 (p = 2)
Let

f(x) = 1
2
x(1 − x)

for 0 ≤ x < 1, and defined as an odd function for −1 ≤ x < 0. We can show that

f(x) = 4
∞∑
n=1

sin(2m− 1)πx
((2m− 1)π)3 (1.9)

Example 1.5 (p = 3)
Considera

f(x) = (1 − x2)2

with Fourier series

an = O

( 1
n4

)
aSheet 1, Q1
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§1.4 Integration of FS

It is always valid to take the integral of a Fourier series term by term. Defining F (x) =∫ x
−L f(x) dx, we can show that F satisfies the Dirichlet conditions if f does. For instance,
a jump discontinuity becomes continuous in the integral.

§1.5 Differentiation

Differentiating term by term is not always valid. For example, consider the square wave
above:

f(x) ?= 4
∞∑
m=1

cos(2m− 1)πx

which is an unbounded series (consider x = 0).

Theorem 1.3
If f(x) is continuous and satisfies the Dirichlet conditions, and f ′(x) also satisfies
the Dirichlet conditions, then f ′(x) can be found term by term by differentiating the
Fourier series of f(x).

Example 1.6
We can differentiate the see-saw function, eq. (1.8), with ξ = 1

2 , even though the
derivative is not continuous. The result is an offset square wave, or by mapping
x 7→ x+ 1

2 we recover the original square wave, eq. (1.7).

§1.6 Parseval’s theorem

Parseval’s theorem relates the integral of the square of a function with the sum of the
squares of the function’s Fourier series coefficients.

Theorem 1.4 (Parseval’s theorem)
Suppose f has Fourier coefficients ai, bi. Then

∫ 2L

0
[f(x)]2 dx =

∫ 2L

0

[
1
2
a0 +

∞∑
n=1

an cos nπx
L

+
∞∑
n=1

bn sin nπx
L

]2

dx
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We can remove cross terms, since the basis functions are orthogonal. eqs. (1.1)
to (1.3)

=
∫ 2L

0

[
1
4
a2

0 +
∞∑
n=1

a2
n cos2 nπx

L
+

∞∑
n=1

b2
n sin2 nπx

L

]
dx

= L

[
1
2
a2

0 +
∞∑
n=1

(a2
n + b2

n)
]

(1.10)

This is also called the completeness relation: the left hand side is greater than or equal to
the right hand side if any of the basis functions are missing.

Example 1.7
Let us apply Parseval’s theorem to the sawtooth wave with FS eq. (1.6).∫ L

−L
[f(x)]2 dx =

∫ L

−L
x2 dx = 2

3
L3

The right hand side gives

L
∞∑
n=1

4L2

n2π2 = 4L3

π2

∞∑
n=1

1
n2

Parseval’s theorem then impliesa

∞∑
n=1

1
n2 = π2

6
aSheet 1, Q3

Note. Parseval’s theorem for functions 〈f, f〉 = ‖f‖2 is equivalent to Pythagoras for
vectors 〈v, v〉 = ‖v‖2.

§1.7 Half-range series

Consider f(x) defined only on 0 ≤ x < L. We can extend the range of f to be the full
range −L ≤ x < L in two simple ways:

1. require f to be odd, so f(−x) = −f(x). Hence, an = 0 (as cos is even) and

bn = 2
L

∫ L

0
f(x) sin nπx

L
dx (1.11)
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So

f(x) =
∞∑
n=1

bn sin nπx
L

which is called a Fourier sine series.

2. require f to be even, so f(−x) = f(x). In this case, bn = 0 and

an = 2
L

∫ L

0
f(x) cos nπx

L
dx (1.12)

and so

f(x) = 1
2
a0 +

∞∑
n=1

an cos nπx
L

which is a Fourier cosine series.

§1.8 Complex representation of Fourier series

Recall that

cos nπx
L

= 1
2

(
einπx/L + e−inπx/L

)
;

sin nπx
L

= 1
2i

(
einπx/L − e−inπx/L

)
Therefore, a Fourier series can be written as

f(x) = 1
2
a0 + 1

2

∞∑
n=1

[
(an − ibn)einπx/L + (an + ibn)e−inπx/L

]
=

∞∑
m=−∞

cme
imπx/L (1.13)

where form > 0 we havem = n, cm = 1
2(an−ibn), and form < 0 we have n = −m, cm =

1
2(a−m + ib−m), and wherem = 0 we have c0 = 1

2a0. In particular,

cm = 1
2L

∫ L

−L
f(x)e−imπx/L dx (1.14)

where the negative sign comes from the complex conjugate. This is because, for complex-
valued f, g, we have
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Definition 1.4 (Complex inner product)

〈f, g〉 =
∫ L

−L
f⋆ag dx

af⋆ is the complex conjugate of f .

The orthogonality conditions are∫ L

−L
e−imπx/Leinπx/L dx = 2Lδmn (1.15)

Parseval’s theorem now states∫ L

−L
f⋆(x)f(x) dx =

∫ L

−L
|f(x)|2 dx = 2L

∞∑
m=−∞

|cm|2

§1.9 Self-adjoint matrices

Much of this section is a recap of IA Vectors andMatrices. Suppose that u, v ∈ CN with inner
product

〈u, v〉 = u†v (1.16)

Definition 1.5 (Hermitian matrix)
The N ×N matrix A is self-adjoint, or Hermitian, if

∀u, v ∈ CN , 〈Au, v〉 = 〈u,Av〉 ⇐⇒ A† = A

The eigenvalues λn and eigenvectors vn satisfy

Avn = λnvn (1.17)

They have the following properties:

1. λ⋆n = λn;

2. λn 6= λm =⇒ 〈vn, vm〉 = 0;

3. we can create an orthonormal basis from the eigenvectors.
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Given b ∈ Cn, we can solve for x in the general matrix equation

Ax = b (1.18)

Express b in terms of the eigenvector basis:

b =
N∑
n=1

bnvn

We seek a solution of the form

x =
N∑
n=1

cnvn

At this point, the bn are known and the cn are our target. Substituting into the matrix
equation eq. (1.18), orthogonality of basis vectors gives

A
N∑
n=1

cnvn =
N∑
n=1

bnvn

N∑
n=1

cnλnvn =
N∑
n=1

bnvn

As the eigenvector basis is orthogonal we can equate coefficients

cnλn = bn

cn = bn
λn

Therefore,

x =
N∑
n=1

bn
λn
vn (1.19)

provided λn 6= 0, or equivalently, the matrix is invertible.

§1.10 Solving inhomogeneous ODEs with Fourier series

We wish to find y(x) given a driving/ source term f(x) for the general differential equa-
tion

Ly ≡ −d2y

dx2 = f(x) (1.20)

with boundary conditions y(0) = y(L) = 0. The related eigenvalue problem is

Lyn = λnyn, yn(0) = yn(L) = 0
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which has solutions

yn(x) = sin nπx
L

, λn =
(
nπ

L

)2
(1.21)

We can show that this is a self-adjoint linear operator1 with orthogonal eigenfunctions.
We seek solutions of the form of a half-range sine series. Consider

y(x) =
∞∑
n=1

cn sin nπx
L

The right hand side is

f(x) =
∞∑
n=1

bn sin nπx
L

We can find bn by

bn = 2
L

∫ L

0
f(x) sin nπx

L
dx

Substituting into eq. (1.20), we have

Ly = − d2

dx2

(∑
n

cn sin nπx
L

)
=
∑
n

cn

(
nπ

L

)2
sin nπx

L

So
∑
n

cn

(
nπ

L

)2
sin nπx

L
=
∑
n

bn sin nπx
L

By orthogonality eq. (1.1),

cn

(
nπ

L

)2
= bn =⇒ cn =

(
L

nπ

)2
bn

Therefore the solution is

y(x) =
∑
n

(
L

nπ

)2
bn sin nπx

L
=
∑
n

bn
λn
yn (1.22)

which is equivalent to the solution we found for self-adjoint matrices for which the ei-
genvalues and eigenvectors are known.

Example 1.8 (Odd square wave)
Consider an odd square wave with L = 1, so f(x) = 1 from 0 ≤ x < 1.

f(x) = 4
∑
m

sin(2m− 1)πx
(2m− 1)π

by eq. (1.7)

1https://math.stackexchange.com/questions/4356100/why-is-the-second-derivative-operator-self-
adjoint
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Then the solution to Ly = f eq. (1.22) should be (with odd n = 2m− 1)

y(x) =
∑
n

bn
λn
yn = 4

∑
n

sin(2m− 1)πx
((2m− 1)π)3

This is exactly the Fourier series eq. (1.9) for

y(x) = 1
2
x(1 − x) (1.23)

so this y is the solution to the differential equation. We can in fact integrate Ly = 1
directly with the boundary conditions to verify the solution. We can also differenti-
ate the Fourier series for y twice to find the square wave.
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§2 Sturm-Liouville Theory

§2.1 Review of second-order linear ODEs

This section is a review of IA Differential Equations.

We wish to solve a general inhomogeneous ODE, written

Ly ≡ α(x)y′′ + β(x)y′ + γ(x)y = f(x) (2.1)

The homogeneous version has f(x) = 0, so

Ly = 0, (2.2)

which has two independent solutions y1, y2. The general solution, also the complement-
ary function for the inhomogeneous ODE, is

yc(x) = Ay1(x) +By2(x). (2.3)

The inhomogeneous equation

Ly = f(x) (2.4)

has a solution called the particular integral, denoted yp(x). The general solution to this
equation is then

y(x) = yp + yc. (2.5)

We need two boundary or initial conditions to find the particular solution to the
differential equation. Suppose x ∈ [a, b]. We can create boundary conditions by
defining y(a), y(b), often called the Dirichlet conditions. Alternatively, we can consider
y(a), y′(a), called the Neumann conditions. We could also used some kind of mixed
condition, for instance y + ky′.

Homogeneous boundary conditions are such that y(a) = y(b) = 0. In this part of the
course, homogeneous boundary conditions are often assumed. Note that we can add
a complementary function yc to the solution, for instance y = y + Ay1 + By2 such that
y(a) = y(b) = 0. This would allow us to construct homogeneous boundary conditions
evenwhen they are not present a priori in the problem. We could also specify initial data,
such as solving for x ≥ a, given y, y′ at x = a.

To solve the inhomogeneous equation eq. (2.1), we want to use eigenfunction expan-
sions (like FS eq. (1.22)). In order to do this, we must first solve the related eigenvalue
problem. In this case, that is

α(x)y′′ + β(x)y′ + γ(x)y = −λρ(x)y. (2.6)

We must solve this equation with the same boundary conditions as the original prob-
lem. This form of equation often arises as a result of applying a separation of variables,
particularly for PDEs in several dimensions.
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§2.2 Sturm-Liouville form

Definition 2.1 (Inner product)
For two complex-valued functions f, g on [a, b], we define the inner product as

〈f, g〉 =
∫ b

a
f⋆(x)g(x) dx

The eigenvalue problem eq. (2.6) above greatly simplifies if L is self-adjoint, that is, if it
can be expressed in Sturm-Liouville form:

Ly ≡ −(py′)′ + qy = λwy. (2.7)

λ is an eigenvalue, and w(x) is the weight function, which must be non-negative w(x) ≥
0 ∀ x.

§2.3 Converting to Sturm-Liouville form

Multiply eq. (2.6) by an integrating factor F (x) to give

Fαy′′ + Fβy′ + Fγy = −λFρy
d

dx
(
Fαy′)− F ′αy′ − Fα′y′ + Fβy′ + Fγy = −λFρy

To eliminate the y′ term, we require F ′α = F (β − α′). Thus,

F ′

F
= β − α′

α

=⇒ F = exp
∫ x β − α′

α
dx (2.8)

and further,

(Fαy′)′ + Fγy = −λFρy

hence

p = Fα

q = −Fγ
w = Fρ

in eq. (2.7) and F (x) > 0 hence w > 0.
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Example 2.1
Consider the Hermite equation for simple harmonic oscillator,

y′′ − 2xy′ + 2ny = 0

In this case for eq. (2.6) α = 1, β = −2x, γ = 0, λp = 2n. So by eq. (2.8)

F = exp
∫ x −2x

1
dx = e−x2

Then the equation, in Sturm-Liouville form, is

Ly ≡ −
(
e−x2

y′
)′

= 2ne−x2
y (2.9)

§2.4 Self-adjoint operators

Definition 2.2 (Self-adjoint operator)
L is a self-adjoint operator on [a, b] for all pairs of functions y1, y2 satisfying appro-
priate boundary conditions if

〈y1,Ly2〉 = 〈Ly1, y2〉

Written explicitly, ∫ b

a
y⋆1(x)Ly2(x) dx =

∫ b

a
(Ly1(x))⋆y2(x) dx (2.10)

Boundary conditions: Substituting Sturm-Liouville form eq. (2.7) into the above,

〈y1,Ly2〉 − 〈Ly1, y2〉 =
∫ b

a

[
−y1(py′

2)′ + y1qy2 + y2(py′
1)′ − y2qy1

]
dx

=
∫ b

a

[
−y1(py′

2)′ + y2(py′
1)′]dx

Adding −y′
1py

′
2 + y′

1py
′
2,

=
∫ b

a

[
−(py1y

′
2)′ + (py′

1y2)′]dx

= [−py1y
′
2 + py′

1y2]ba (2.11)

which must be zero for an equation in Sturm-Liouville form to be self-adjoint.
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§2.5 Self-adjoint compatible boundary conditions

• Suppose y(a) = y(b) = 0. Then certainly the Sturm-Liouville form of the differen-
tial equation is self-adjoint. We could also choose y′(a) = y′(b) = 0 or y + ky′ = 0.
Collectively, the act of using homogeneous boundary conditions is known as the
regular Sturm-Liouville problem.

• Periodic boundary conditions could also be used, such as y(a) = y(b).

• If a and b are singular points of the equation, i.e. p(a) = p(b) = 0, this is self-adjoint
compatible.

• We could also have combinations of the above properties, one at a and one at b.

§2.6 Properties of self-adjoint operators

The following properties hold for any self-adjoint differential operator L.

1. The eigenvalues λn are real (also eigenfunctions are real).

2. The eigenfunctions yn are orthogonal.

3. The yn are a complete set; they span the space of all functions hence our general
solution can be written in terms of these eigenfunctions.

Each property is proven in its own subsection.

§2.7 Real eigenvalues

Proof. Suppose we have some eigenvalue λn, so

Lyn = λnwyn. (2.12)

Taking the complex conjugate, Ly⋆n = λ⋆nwy
⋆
n, since L, w are real. Now, consider∫ b

a
(y⋆nLyn − ynLy⋆n) dx

which must be zero if L is self-adjoint, eq. (2.10). This can be written as

(λn − λ⋆n)
∫ b

a
wy⋆nyn dx = 0

The integral is nonzero, hence λn − λ⋆n = 0 which implies λn is real.
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Aside

Note, if the λn are non-degenerate (simple), i.e. with a unique eigenfunction yn, then
y⋆n = yn hence they are real. We can in fact show that (for a second-order equation) it
is always possible to take linear combinations of eigenfunctions such that the result is
linear, for example in the exponential form of the Fourier series. Hence, we can assume
that yn is real.

We can further prove that the regular Sturm-Liouville problem must have simple (non-
degenerate) eigenvalues λn, by considering two possible eigenfunctions u, v for the
same λ, and use the expression for self-adjointness. We find uLv − (Lu)v = [−p(uv′ −
u′v)]′ which contains theWronskian. We can integrate and impose homogeneous bound-
ary conditions to get the required result.

§2.8 Orthogonality of eigenfunctions

Suppose Lyn = λnwyn eq. (2.12), and Lym = λmwym where λn 6= λm. Then, we can
integrate to find∫ b

a
(ymLyn − ynLym) dx = (λn − λm)

∫ b

a
wynym dx = 0 by self-adjointness eq. (2.10)

Since λn 6= λm, we have

∀n 6= m,

∫ b

a
wynym dx = 0 (2.13)

Hence, yn and ym are orthogonal with respect to the weight function w on [a, b].

Definition 2.3 (Inner product)
We define the inner product with respect to w to be

〈f, g〉w =
∫ b

a
w(x)f⋆(x)g(x) dx (2.14)

Note,

〈f, g〉w = 〈wf, g〉 = 〈f, wg〉

Hence, the orthogonality relation becomes

∀n 6= m, 〈yn, ym〉w = 0. (2.15)
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§2.9 Eigenfunction expansions

The completeness of the family of eigenfunctions (which is not proven here) implies
that we can approximate any ‘well-behaved’ f(x) on [a, b] by the series

f(x) =
∞∑
n=1

anyn(x) (2.16)

This is comparable to Fourier series. To find the coefficients an, we will take the inner
product with an eigenfunction. By orthogonality,∫ b

a
wymf dx =

∞∑
n=1

an

∫ b

a
wynym dx

= am

∫ b

a
wy2

m dx by orthogonality eq. (2.13)

Hence,

an =
∫ b
a wynf dx∫ b
a wy

2
n dx

(2.17)

We can normalise eigenfunctions, for instance

Yn(x) = yn(x)(∫ b
a wy

2
n dx

) 1
2

(2.18)

hence

〈Yn, Ym〉w = δnm

giving an orthonormal set of eigenfunctions. In this case,

f(x) =
∞∑
n=1

AnYn

where

An =
∫ b

a
wYnf dx

Example 2.2
Recall Fourier series in Sturm-Liouville form eq. (1.21):

Lyn ≡ −d2y

dx2 = λnyn
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where in this case we have

λn =
(
nπ

L

)2

by orthogonality relations eqs. (1.1) to (1.3)

§2.10 Completeness and Parseval’s identity

Consider ∫ b

a

[
f(x) −

∞∑
n=1

anyn

]2

w dx

By orthogonality eq. (2.13), this is equivalently∫ b

a

[
f2 − 2f

∑
n

anyn +
∑
n

a2
ny

2
n

]
w dx =

∫ b

a
wf2 dx−

∞∑
n=1

(
2an

∫ b

a
fynw dx− a2

n

∫ b

a
wy2

n dx
)

Note that the second term can be extracted using the definition of an (
∫
fynw dx =

an
∫
wy2

n dx) eq. (2.17), giving∫ b

a
wf2 dx−

∞∑
n=1

a2
n

∫ b

a
wy2

n dx

If the eigenfunctions are complete, then the result will be zero, showing that the series
expansion converges.∫ b

a
wf2 dx =

∞∑
n=1

a2
n

∫ b

a
wy2

n dx (2.19)

=
∞∑
n=1

A2
n for unit normalised Yn eq. (2.18)

If some eigenfunctions are missing, this is Bessel’s inequality:∫ b

a
wf2 dx ≥

∞∑
n=1

A2
n

We define the partial sum to be

SN (x) =
N∑
n=1

anyn

with

f(x) = lim
N→∞

SN (x). (2.20)
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Convergence is defined in terms of the mean-square error. In particular, if we have a
complete set of eigenfunctions,

εN =
∫ b

a
w[f(x) − Sn(x)]2 dx → 0

This ‘global’ definition of convergence is convergence in the mean, not pointwise con-
vergence as in Fourier series2. The error in partial sum SN is minimised by an above for
the N = ∞ expansion.

∂εN
∂an

= −2
∫ b

a
ynw

[
f −

N∑
n=1

anyn

]
dx

= −2
∫ b

a

(
wfyn − anwy

2
n

)
dx

= 0 if an given by eq. (2.17)

It is minimal becausewe can show ∂2ε
∂a2

n
= 2

∫ b
a wy

2
n dx ≥ 0. Thus the an given in eq. (2.17)

is the best possible choice for the coefficient at all N .

§2.11 Legendre’s equation

Consider Legendre’s equation arising from ∇2u = 0 in spherical polars with x = cos θ.
Legendre’s equation is

(1 − x2)y′′ − 2xy′ + λy = 0 (2.21)

on x ∈ [−1, 1], with boundary conditions that y is finite at x = ±1, at the regular singular
points of the ODE. This equation is already in Sturm-Liouville form, eq. (2.7), with

p = 1 − x2, q = 0, w = 1.

We seek a power series solution centred on x = 0:

y =
∑
n

cnx
n.

Substituting into eq. (2.21),

(1 − x2)
∑
n

n(n− 1)cnxn−2 − 2x
∑
n

cnx
n−1 + λ

∑
n

cnx
n = 0

Equating powers of xn,

(n+ 2)(n+ 1)cn+2 − n(n− 1)cn − 2ncn + λcn = 0
2convergence in mean is weaker than pointwise convergence
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which gives a recursion relation between cn+2 and cn.

cn+2 = n(n+ 1) − λ

(n+ 1)(n+ 2)
cn (2.22)

Hence, specifying c0, c1 gives two independent solutions. In particular,

yeven = c0

[
1 + (−λ)

2!
x2 + (6 − λ)(−λ)

4!
x4 + . . .

]

yodd = c1

[
x+ (2 − λ)

3!
x3 + . . .

]
As n → ∞, cn+2

cn
≈ n2

n2 → 1. So these are geometric series, with radius of convergence
|x| < 1, hence there is divergence at x = ±1. So taking a power series does not give a
useful solution.

Suppose we chose λ = ℓ(ℓ + 1). Then eventually we have n such that the numerator
vanishes. In particular, by taking λ = ℓ(ℓ+1), either the series for yeven or yodd terminates.
These functions are called theLegendre polynomials, denotedPℓ(x), are eigenfunctions
of eq. (2.21) on −1 ≤ x ≤ 1 with the normalisation convention Pℓ(1) = 1 (not unit
normalised).

• ℓ = 0, λ = 0, P0(x) = 1

• ℓ = 1, λ = 2, P1(x) = x

• ℓ = 2, λ = 6, P2(x) = 3x2−1
2

• ℓ = 3, λ = 12, P3(x) = 5x3−3x
2

Note. Pℓ(x) has ℓ zeroes. Pℓ is odd if ℓ is odd, Pℓ is even for even ℓ.
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§2.12 Properties of Legendre polynomials

Since Legendre polynomials come from a self-adjoint operator, they must have certain
conditions, such as orthogonality. For n 6= m,∫ 1

−1
PnPm dx = 0

They are also normalisable, ∫ 1

−1
P 2
n dx = 2

2n+ 1
(2.24)

We can prove this with Rodrigues’ formula (Sheet 2, Q5):

Pn(x) = 1
2nn!

( d
dx

)n
(x2 − 1)n

Alternatively we could use a generating function:
∞∑
n=0

Pn(x)tn = 1√
1 − 2xt+ t2

(2.23a)

= 1 + 1
2

(
2xt− t2

)
+ 3

8

(
2xt− t2

)2
+ . . .

= 1 + xt+ 1
2

(
3x2 − 1

)
t2 + . . .

= P0 + P1t+ P2t
2 + . . .

Exercise 2.1. Verify P3 and find P4 using binomial expansion.

There are some useful recursion relations3.

ℓ(ℓ+ 1)Pℓ+1(x) = (2ℓ+ 1)xPℓ(x) − ℓPℓ−1(x)

Also,

(2ℓ+ 1)Pℓ(x) = d
dx

[Pℓ+1(x) − Pℓ−1(x)]

§2.13 Legendre polynomials as eigenfunctions

Any (well-behaved) function f(x) on [−1, 1] can be expressed as

f(x) =
∞∑
ℓ=0

aℓPℓ(x) (2.25)

3Derived in Example Sheet
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where

aℓ = 2ℓ+ 1
2

∫ 1

−1
f(x)Pℓ(x) dx (2.26)

with no boundary conditions (e.g. periodicity conditions) on f .

Exercise 2.2. Verify f(x) = 15
2 x

2 − 3
2 = P0(x) + 5P2(x) using eq. (2.26)

§2.14 Solving inhomogeneous differential equations

This can be thought of as the general case of Fourier series discussed previously.

Consider the problem

Ly = f(x) ≡ w(x)F (x) (2.27)

on x ∈ [a, b] assuming homogeneous boundary conditions. Given eigenfunctions yn(x)
satisfying Lyn = λnwyn, we wish to expand this solution as (recall section 1.10)

y(x) =
∑
n

cnyn(x)

and

F (x) =
∑
n

anyn(x)

where an are known and cn are unknown. Using eq. (2.17):

an =
∫ b
a wFyn dx∫ b
a wy

2
n dx

Substituting,

Ly = L
∑
n

cnyn = w
∑
n

cnλnyn = w
∑
n

anyn

By orthogonality,

cnλn = an =⇒ cn = an
λn

In particular,

y(x) =
∞∑
n=1

an
λn
yn(x) (2.28)

(assuming λn 6= 0, ∀ n).
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We can further generalise; we can permit a driving force, which often induces a linear
response term λ̃wy.

Ly − λ̃wy = f(x) (2.29)

where λ̃ is fixed. The solution eq. (2.28) becomes

y(x) =
∞∑
n=1

an

λn − λ̃
yn(x) (2.30)

(again λ̃ 6= λn, ∀ n).

§2.15 Integral solutions and Green’s function

Recall eq. (2.28)

y(x) =
∞∑
n=1

an
λn
yn(x) =

∑
n

yn(x)
λnNn

∫ b

a
w(ξ)F (ξ)yn(ξ) dξ by eq. (2.17)

where

Nn =
∫
wy2

n dx

This then gives

y(x) =
∫ b

a

∞∑
n=1

yn(x)yn(ξ)
λnNn︸ ︷︷ ︸

G(x,ξ)

w(ξ)F (ξ)︸ ︷︷ ︸
f(ξ)

dξ

=
∫ b

a
G(x; ξ)f(ξ) dξ (2.31)

where

G(x, ξ) =
∞∑
n=1

yn(x)yn(ξ)
λnNn

is the eigenfunction expansion of the Green’s function. Note that the Green’s function
does not depend on f , but only on L and the boundary conditions. In this sense, it acts
like an inverse operator

L−1 ≡
∫

dξ G(x, ξ)

analogously to how Ax = b =⇒ x = A−1b for matrix equations.
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Part II
PDEs on Bounded Domains
§3 The Wave Equation

§3.1 Waves on an elastic string

Consider a small displacement y(x, t) on a stretched string with fixed ends at x = 0 and
x = L, that is, with boundary conditions

y(0, t) = y(L, t) = 0. (3.1)

and initial conditions

y(x, 0) = p(x), ∂y
∂t

(x, 0) = q(x) (3.2)

We derive the equation of motion governing themotion of the string by balancing forces
on a string segment (x, x+ δx) and take the limit as δx → 0.

Let T1 be the tension force acting to the left at angle θ1 from the horizontal. Analogously,
let T2 be the rightwards tension force at angle θ2. We assume at any point on the string
that

∣∣∣ ∂y∂x ∣∣∣ � 1, so the angles of the forces, θ1, θ2 are small. In the x dimension,

T1 cos θ1 = T2 cos θ2 =⇒ T1 ≈ T2 = T by small angle approximation

So the tension T is a constant independent of x up to an error of order O
(∣∣∣ ∂y∂x ∣∣∣2). In the

y dimension, since the θ are small,

FT = T2 sin θ2 − T1 sin θ1 ≈ T

(
∂y

∂x

∣∣∣∣
x+δx

− ∂y

∂x

∣∣∣∣
x

)
≈ T

∂2y

∂x2 δx
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By F = ma,

FT + Fg = (µ δx)∂
2y

∂t2
= T

∂2y

∂x2 δx− gµδx

whereFg is the gravitational force andµ is themass per unit length (linearmass density).
We define the wave speed as

c =
√
T

µ
(a constant)

and find
∂2y

∂t2
= T

µ

∂2y

∂x2 − g = c2 ∂
2y

∂x2 − g (3.3)

We often assume gravity is negligible to produce the pure wave equation

1
c2
∂2y

∂t2
= ∂2y

∂x2 . (3.4)

The 1D wave equation is then ÿ = c2y′′.

§3.2 Separation of variables

Wewish to solve thewave equation eq. (3.4) subject to boundary conditions eq. (3.1) and
initial conditions eq. (3.2). Consider a possible solution of seperable form (ansatz):

y(x, t) = X(x)T (t) (3.5)

Substituting into the wave equation eq. (3.4),

1
c2 ÿ = y′′ =⇒ 1

c2XT̈ = X ′′T.

Then
1
c2
T̈

T
= X ′′

X

However, T̈T depends only on t and X′′

X depends only on x. Thus, both sides must be
equal to some separation constant −λ.

1
c2
T̈

T
= X ′′

X
= −λ

Hence,

X ′′ + λX = 0 (3.6)
T̈ + λc2T = 0. (3.7)
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§3.3 Boundary conditions and normal modes

We will begin by first solving the spatial ODE eq. (3.6). One of λ > 0, λ < 0, λ = 0 must
be true. The boundary conditions eq. (3.1) restrict the possible λ.

1. First, suppose λ < 0. Take χ2 = −λ. Then,

X(x) = Aeχx +Be−χx = Ã cosh(χx) + B̃ sinh(χx).

The boundary conditions are x(0) = x(L) = 0, so only the trivial solution is pos-
sible: Ã = B̃ = 0.

2. Now, suppose λ = 0. Then

X(x) = Ax+B.

Again, the boundary conditions imposeA = B = 0 giving only the trivial solution.

3. Finally, the last possibility is λ > 0.

X(x) = A cos
(√

λx
)

+B sin
(√

λx
)

The boundary conditions give

A = 0; B sin
(√

λL
)

= 0 =⇒
√
λL = nπ.

The following are the eigenfunctions and eigenvalues.

Xn(x) = Bn sin nπx
L

; λn =
(
nπ

L

)2
(n > 0) (3.8)

These are also called the normal modes of the system because the spatial shape in x
does not change in time, but the amplitude may vary.
The fundamental mode is the lowest frequency of vibration, given by

n = 1 =⇒ λ1 = π2

L2

The second mode is the first overtone, and is given by

n = 2 =⇒ λ2 = 4π2

L2
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§3.4 Initial conditions and temporal solutions

Substituting λn into the time ODE eq. (3.7),

T̈ + n2π2c2

L2 T = 0.

Hence,

Tn(t) = Cn cos nπct
L

+Dn sin nπct
L

. (3.9)

Therefore, a specific solution of the wave equation, eq. (3.4), satisfying the boundary
conditions, eq. (3.1), is (absorbing the Bn into the Cn, Dn):

yn(x, t) = Tn(t)Xn(x) =
(
Cn cos nπct

L
+Dn sin nπct

L

)
sin nπx

L

Exercise 3.1. Verify it’s a solution.

Since the wave equation eq. (3.4) is linear (and b.c.s eq. (3.1) are homogenous) we can
add the solutions (the yn) together to find general string solution

y(x, t) =
∞∑
n=1

(
Cn cos nπct

L
+Dn sin nπct

L

)
sin nπx

L
. (3.10)

By construction, this y(x, t) satisfies the boundary conditions, so now we can impose
the initial conditions eq. (3.2):

y(x, 0) = p(x) =
∞∑
n=1

Cn sin nπx
L

We can find the Cn using standard Fourier series techniques eq. (1.12), since this is
exactly a half-range sine series. Further,

∂y(x, 0)
∂t

= q(x) =
∞∑
n=1

nπc

L
Dn sin nπx

L
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Again we can solve for the Dn in a similar way. Using eq. (1.12):

Cn = 2
L

∫ L

0
p(x) sin nπx

L
dx

Dn = 2
nπc

∫ L

0
q(x) sin nπx

L
dx

(3.11)

Hence eq. (3.11) is the solution to eq. (3.4) satisfying eqs. (3.1) and (3.2).

Example 3.1
Consider the initial condition of a see-saw wave parametrised by ξ, and let L = 1.
This can be visualised as plucking the string at position ξ.

y(x, 0) = p(x) =
{
x(1 − ξ) 0 ≤ x < ξ

ξ(1 − x) ξ ≤ x < 1

We also define

∂y(x, 0)
∂t

= q(x) = 0

The Fourier series eq. (1.8) for p is given by

Cn = 2 sinnπξ
(nπ)2 ; Dn = 0

Hence the solution to the wave equation is

y(x, t) =
∞∑
n=1

2
(nπ)2 sinnπξ sinnπx cosnπct

Take ξ = 1
2 , C2m = 0, C2m−1 = 2(−1)m+1

((2m−1)π)2 (odd only), e.g. Guitar has 1
4 ≤ ξ ≤ 1

3 ,
Violin ξ ≈ 1

7 .

Solution in characterstic coordinates

Recall sine/cosine summation identities (before eq. (1.1))whichmeans our general solu-
tion eq. (3.10) becomes

y(x, t) = 1
2

∞∑
n=1

[
Cn sin nπ

L
(x− ct) +Dn cos nπ

L
(x− ct) + Cn sin nπ

L
(x+ ct) +Dn cos nπ

L
(x+ ct)

]
≡ f(x− ct) + g(x+ ct) (3.12)
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The standing wave solution eq. (3.10) is made up of a right-moving wave (along char-
acteristic x− ct = η, η a constant) and a left-moving wave (x+ ct = ξ, ξ a constant) i.e.
a general solution with arbitrary f, g (see later).

Special case: q(x) = 0 in eq. (3.1) =⇒ f = g = 1
2D at t = 0.

§3.5 Separation of variables methodology

A general strategy for solving higher-dimensional partial differential equations is as fol-
lows.

1. Obtain a linear PDE system, using boundary and initial conditions.

2. Separate variables to yield decoupled ODEs.

3. Impose homogeneous boundary conditions to find eigenvalues and eigenfunc-
tions.

4. Use these eigenvalues (constants of separation) to find the eigenfunctions in the
other variables.

5. Sum over the products of separable solutions to find the general series solution.

6. Determine coefficients for this series using the initial conditions.

§3.6 Energy of oscillations

A vibrating string has kinetic energy due to its motion.

Kinetic energy = 1
2
µ

∫ L

0

(
∂y

∂t

)2
dx
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It has potential energy due to stretching by ∆x given by

Potential energy = T∆x = T

∫ T

c


√

1 +
(
∂y

∂x

)2

︸ ︷︷ ︸
arc length s

−1

dx ≈ 1
2
T

∫ L

0

(
∂y

∂x

)2
dx

assuming that the disturbances on the string are small, that is,
∣∣∣ ∂y∂x ∣∣∣ � 1. The total energy

on the string, given c2 = T/µ, is given by

E = 1
2
µ

∫ L

0

[(
∂y

∂t

)2
+ c2

(
∂y

∂x

)2
]

dx (3.13)

Substituting the solution eq. (3.10), using the orthogonality conditions eq. (1.1),

E = 1
2
µ

∞∑
n=1

∫ L

0

[(
−nπc

L
Cn sin nπct

L
+ nπc

L
Dn cos nπct

L

)2
sin2 nπx

L

+ c2
(
Cn cos nπct

L
+Dn sin nπct

L

)2n2π2

L2 cos2 nπx

L

]
dx

= 1
4
µ

∞∑
n=1

n2π2c2

L

(
C2
n +D2

n

)
(3.14)

which is an analogous result to Parseval’s theorem. This is true since∫ L

0
cos2 nπx

L
dx = L

2

and cos2 + sin2 = 1. We can think of this energy as the sum over all the normal modes
of the energy in that specific mode. Note that this quantity is constant over time (no
dissipation).

§3.7 Wave reflection and transmission

Recall the travelling wave solution eq. (3.12). The travelling wave has left-moving and
right-moving modes. A simple harmonic travelling wave is

y = Re
[
Aeiω(t−x/c)

]
= A cos [ω(t− x/c) + φ]

where the phaseφ is equal to argA, and thewavelength λ is 2πc/ω. In further discussion,
we assume only the real part is used.

Consider a density discontinuity on the string at x = 0 with the following properties.

µ =
{
µ− for x < 0
µ+ for x > 0

=⇒ c =

c− =
√

T
µ−

for x < 0
c+ =

√
T
µ+

for x > 0
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assuming a constant tension T . As a wave from the negative direction approaches the
discontinuity, some of the wave will be reflected, given byBeiω(t+x/c−), and some of the
wavewill be transmitted, given byDeiω(t−x/c+). The boundary conditions at x = 0 are

1. y is continuous for all t (the string does not break), so
A+B = D (∗)

2. The forces balance, T ∂y
∂x

∣∣∣
x=0−

= T ∂y
∂x

∣∣∣
x=0+

which means ∂y
∂x must be continuous

for all t. This gives
−iωA
c−

+ iωB

c−
= −iωD

c+
(†)

We can eliminate B from (∗) by subtracting c−
iω (†).

2A = D +D
c−
c+

= D

c+
(c+ + c−)

Hence, given A, we have the solution for the transmitted amplitude and reflected amp-
litude to be

D = 2c+
c− + c+

A; B = c+ − c−
c− + c+

(3.16)

In general A,B,D are complex, hence different phase shifts are possible.

There are a number of limiting cases, for example

1. If c− = c+ we have D = A and B = 0 so we have full transmission and no reflec-
tion.

2. (Dirichlet boundary conditions) If µ+
µ−

→ ∞, this models a fixed end at x = 0. We
have c+

c−
→ 0 giving D = 0 and B = −A. Notice that the reflection has occurred

with opposite phase, φ = π.

3. (Neumann boundary conditions) Consider µ+
µ−

→ 0, this models a free end. Then
c+
c−

→ ∞ giving D = 2A, B = A. This gives total reflection but with the same
phase.
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§3.8 Wave equation in 2D plane polar coordinates

Consider the two-dimensional wave equation for u(r, θ, t) given by

1
c2
∂2u

∂t2
= ∇2u (3.17)

with boundary conditions at r = 1 on a unit disc given by

u(1, θ, t) = 0 (fixed rim) (3.18)

and initial conditions for t = 0 given by

u(r, θ, 0) = φ(r, θ); ∂u

∂t
= ψ(r, θ) (3.19)

§3.8.1 Temporal Seperation

Suppose that this equation is separable. First, let us consider temporal separation. Sup-
pose that

u(r, θ, t) = T (t)V (r, θ) (3.20)

Then substitute into eq. (3.17)

T̈ + λc2T = 0 (3.21)
∇2V + λV = 0 (3.22)

In plane polar coordinates, we can write the spatial equation eq. (3.22) as

∂2V

∂r2 + 1
r

∂V

∂r
+ 1
r2
∂2V

∂θ2 + λV = 0

§3.8.2 Spatial Seperation

We will perform another separation, supposing

V (r, θ) = R(r)Θ(θ).

Substitute into eq. (3.22)

Θ′′ + µΘ = 0 (3.23)
r2R′′ + rR′ +

(
λr2 − µ

)
R = 0 (3.24)

where λ, µ are the separation constants.
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§3.8.3 Polar Solution

The polar solution is constrained by periodicity Θ(0) = Θ(2π), since we are working on
a disc. We also consider only µ > 0. The eigenvalue is then given by µ = m2, where
m ∈ N ∪ {0}.

Θm(θ) = Am cosmθ +Bm sinmθ (3.25)

Or, in complex exponential form,

Θm(θ) = Cme
imθ; m ∈ Z

§3.9 Radial Equations

We can solve the radial equation eq. (3.24) (in the previous subsection) by converting
it first into Sturm-Liouville form eq. (2.7), which can be accomplished by dividing by r
with µ = m2.

d
dr
(
rR′)− m2

r
= −λrR (0 ≤ r ≤ 1) (3.26)

where p(r) = r, q(r) = m2

r , w(r) = r, with self-adjoint boundary conditions withR(1) =
0. We will require R is bounded at R(0), and since p(0) = 0 there is a regular singular
point at r = 0.

§3.9.1 Bessel’s equation

This particular equation for R is known as Bessel’s equation. We will first substitute
z ≡

√
λr in eq. (3.26), then we find the usual form of Bessel’s equation4,

z2 d2R

dz2 + z
dR
dz

+ (z2 −m2)R = 0 (3.27)

§3.9.2 Frobenius Solution

We can use the method of Frobenius by substituting the following power series:

R = zp
∞∑
n=0

anz
n

4May also be written as (zR′)′ + (z − m2/z)R = 0
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to find
∞∑
n=0

[
an(n+ p)(n+ p− 1)zn+p + (n+ p)zn+p + zn+p+2 +m2zn+p

]
= 0

Equating powers of z, we can find the indicial equation

p2 −m2 = 0 =⇒ p = m,−m

The regular solution, given by p = m, has recursion relation

(n+m)2an + an−2 −m2an = 0

which gives

an = −1
n(n+ 2m)

an−2

Hence, we can find

a2n = a0
(−1)n

22nn!(n+m)(n+m− 1) . . . (m+ 1)

If, by convention, we let

a0 = 1
2mm!

we can then write the Bessel function of the first kind by

Jm(z) =
(
z

2

)m ∞∑
n=0

(−1)n

n!(n+m)!

(
z

2

)2n
(3.28)

Exercise 3.2. Use y =
√
zR in Bessel’s eqn eq. (3.27) to find y′′ + y(1 + 1

4z − m2

z2 ). So, as
z → ∞, y′′ = −y so we have solns R = 1√

z
(A cos z +B sin z).

Also works for m = µ (µ /∈ Z) if (n + m)! → Γ(n + m + 1). Second soln with p = −m
(integer) is the Neuman function (Bessel function of second kind).

Ym(z) = lim
µ→m

Jµ cos(µπ) − J−µ(z)
sinµπ

Exercise 3.3. Use eq. (3.28) to show that d
dz (zmJm(z)) = zmJm−1(z) and hence

J ′
m(z) + m

z
Jm(z) = Jm−1(z) (3.29)

Repeat with z−m to find recursion relations

Jm−1(z) + Jm+1(z) = 2m
z
Jm(z)

Jm−1(z) − Jm+1(z) = 2J ′
m(z)

(3.30)
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§3.10 Asymptotic behaviour of Bessel functions

If z is small, the leading-order behaviour of Jm(z) is

J0(z) ≈ 1

Jm(z) ≈ 1
m!

(
z

2

)m
Y0(z) → 2

π
ln
(
z

2

)
Ym(z) → −(m− 1)!

π
(2
z

)m (3.31)

Now, let us consider large z. In this case, the function becomes oscillatory;

Jm(z) ≈
√

2
πz

cos
(
z − mπ

2
− π

4

)
(3.32)

Ym(z) ≈
√

2
πz

sin
(
z − mπ

2
− π

4

)

§3.11 Zeroes of Bessel functions Jm(z)

We can see from the asymptotic behaviour that there are infinitely many zeroes of the
Bessel functions of the first kind as z → ∞. We define jmn to be the nth zero of Jm, for
z > 0. Approximately using eq. (3.32),

cos
(
z − mπ

2
− π

4

)
= 0 =⇒ z − mπ

2
− π

4
= nπ − π

2
(modal point)

Hence

z ≈ nπ + mπ

2
− π

4
≡ j̃mn

Non-examinable

Accuracy, ∣∣∣∣∣jmn − j̃mn
jmn

∣∣∣∣∣ < 0.1
n

for n > m2

2
. (3.33)

For J0(z) actual values are J01 = 2.405, j02 = 5.520, j03 = 8.653, j0n = nπ− π
4 (precision

≈ 1%/n).
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§3.12 Solving the vibrating drum

Recall that the radial solutions to eq. (3.26) become

Rm(z) = Rm(
√
λx) = AJm(

√
λx) +BYm(

√
λx)

Imposing the boundary condition of boundedness at r = 0, we must have B = 0 by
eq. (3.31). Further imposing r = 1 and R = 0 gives Jm(

√
λ) = 0. These zeroes occur at

jmn ≈ nπ + mπ
2 − π

4 . Hence, the eigenvalues must be

λ = j2
mn. (3.34)

Therefore, the spatial solution with the polar mode eq. (3.26) is

Vmn(r, θ) = Θm(θ)Rmn(
√
λmnr)

= (Amn cosmθ +Bmn sinmθ)Jm(jmnr) (3.35)

The temporal solution eq. (3.21) is

T̈ = −λc2T =⇒ Tmn(t) = cos(jmnct), sin(jmnct)

Combining everything together, the full solution to eq. (3.17) is

u(r, θ, t) =
∞∑
n=1

J0(j0nr)(A0n cos j0nct+ C0n sin j0nct)

+
∞∑
m=1

∞∑
n=1

Jm(jmnr)(Amn cosmθ +Bmn sinmθ) cos jmnct

+
∞∑
m=1

∞∑
n=1

Jm(jmnr)(Cmn cosmθ +Dmn sinmθ) sin jmnct

(3.36)
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Now, we impose the initial conditions eq. (3.19) at t = 0

u(r, θ, 0) = φ(r, θ) =
∞∑
m=0

∞∑
n=1

Jm(jmnr)(Amn cosmθ +Bmn sinmθ) (3.37)

and

∂u

∂t
(r, θ, 0) = ψ(r, θ) =

∞∑
m=0

∞∑
n=1

jmncJm(jmnr)(Cmn cosmθ +Dmn sinmθ)

We need to find the coefficients by multiplying by Jm, cos, sin and using the orthogon-
ality relations (eqs. (1.1) to (1.3) and Sheet 1, Q8), which are∫ 1

0
Jm(jmnr)Jm(jmkr)r dr = 1

2
[
J ′
m(jmn)

]2
δnk (3.38)

= 1
2

[Jm+1(jmn)]2δnk (3.39)

by using a recursion relation of the Bessel functions. We can then integrate to obtain the
coefficients Amn.∫ 2π

0
dθ cos pθ

∫ 1

0
r dr Jp(jpqr)φ(r, θ) = π

2
[Jp+1(jpq)]2Apq

where the π
2 coefficient is 2π for p = 0.

Exercise 3.4. Find the analogous results for the Bmn, Cmn, Dmn.

Example 3.2
Consider an initial radial profile u(r, θ, 0) = φ(r) = 1 − r2. Then, m = 0, Bmn = 0
for allm and Amn = 0 for allm 6= n. Then

∂u

∂t
(r, 0, 0) = 0

hence Cmn, Dmn = 0. We just now need to find

A0n = 2
J1(j0n)2

∫ 1

0
J0(j0nr)(1 − r)2r dr = 2

J1(j0n)2
J2(j0n)
j2

0n
≈ J2(j0n)

n
as n → ∞

Proving this is left as an exercise using eqs. (3.29) and (3.30). Then the approximate
solution is

u(r, θ, t) =
∞∑
n=1

A0nJ0(j0nr) cos j0nct
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The fundamental frequency is ωd = j01c
2
d ≈ 4.8 cd where d is the diameter of the

drum. Comparing this to a string with length d, this has a fundamental frequency
of ωs = πc

d ≈ 0.77ωd.
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§4 Diffusion equation

§4.1 Diffusion equation derivation with Fourier’s law

Fourier’s law for heat flow is

q = −k∇θ (4.1)

where q is the heat flux, k the thermal conductivity and θ is the temperature. In a volume
V , the overall heat energy Q is given by

Q =
∫
V
cV ρθ dV (4.2)

where cV is the specific heat of the material, ρ is the mass density. The rate of change
due to heat flow is

dQ
dt

=
∫
V
cV ρ

∂θ

∂t
dV (∗)

We will integrate eq. (4.1) over the surface S = ∂V , giving

−dQ
dt

=
∫
S
q · n̂ dS

The negative sign is due to the normals facing outwards. This is exactly

−dQ
dt

=
∫
S
(−k∇θ) · n̂ dS =

∫
V

−k∇2θ dV (†)

Equating these two forms ((∗) and (†)) for dQ
dt , we find∫

V
(cV ρ

∂θ

∂t
− k∇2θ) dV = 0

Since V was arbitrary, the integrand must be zero. So we have

∂θ

∂t
− k

cV ρ
∇2θ = 0

Let D = k
cV ρ

be the diffusion constant. Then we have the diffusion equation

∂θ

∂t
−D∇2θ = 0 (4.3)
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§4.2 Diffusion equation derivation with statistical dynamics

We can derive this equation in another way, using statistical dynamics. Gas particles
diffuse by scattering every fixed time step ∆t with probability density function p(ξ) of
moving by a displacement ξ. On average, we have

E[ξ] =
∫
p(ξ)ξ dξ = 0

since there is no bias the direction in which any given particle is travelling. Suppose that
the probability density function after N∆t time is described by PN∆t(x). Then, for the
next time step,

P(N+1)∆t(x) =
∫ ∞

−∞
p(ξ)PN∆t(x− ξ) dξ

Using the Taylor expansion,

P(N+1)∆t(x) ≈
∫ ∞

−∞
p(ξ)

[
PN∆t(x) + P ′

N∆t(x)(−ξ) + P ′′
N∆t(x)ξ

2

2
+ · · ·

]
dξ

≈ PN∆t(x) − P ′
N∆t(x)E[ξ] + P ′′

N∆t(x)E[ξ2]
2

+ · · ·

≈ PN∆t(x) + P ′′
N∆t(x)E[ξ2]

2
+ · · ·

since
∫
p(ξ) dξ = 1. Identifying PN∆t(x) = P (x,N∆t), we can write

P (x, (N + 1)∆t) − P (x,N∆t) = ∂2

∂x2P (x,N∆t)E[ξ2]
2

Assuming that the variance E[ξ2]5 is equal to 2D∆t, then for small ∆t, we find

∂P

∂t
= D

∂2P

∂x2 (4.4)

which is exactly the diffusion equation.

§4.3 Similarity solutions

The characteristic relation between the variance and time suggests thatwe seek solutions
with a dimensionless parameter. If we can find a change of variables of the form θ(η) =
θ(x, t), then it will likely be easier to solve. Consider

η ≡ x

2
√
Dt

(4.5)

5Var X = E[X2] − E[X]2 and E[X] = 0.
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Then changing variables in eq. (4.3),
∂θ

∂t
= ∂η

∂t

∂θ

∂η
= −1

2
x√
Dt3/2

θ′ = −1
2
η

t
θ′

and

D
∂2θ

∂x2 = D
∂

∂x

(
∂η

∂x

∂θ

∂η

)
= D

∂

∂x

( 1
2
√
Dt

θ′
)

= D

4Dt
θ′′ = 1

4t
θ′′

Equating,

θ′′ = −2ηθ′ (4.6)

Let ψ = θ′. Then
ψ′

ψ
= −2η =⇒ lnψ = −η2 + constant

Then, choosing a constant of c 2√
π
,

ψ = c
2√
π
e−η2 =⇒ θ(η) = c

2√
π

∫ η

0
e−u2 du = c erf(η) = c erf

(
x

2
√
Dt

)
(4.7)

where

erf(z) = 2√
π

∫ z

0
e−u2 du

This describes discontinuous initial conditions that spread over time.

−3 −2 −1 0 1 2 3
−1.0

−0.5

0.0
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x

θ

D = 1
t = 0
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t = 10−2

t = 10−1

t = 100

t = 101

t = 102
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§4.4 Heat conduction in a finite bar

Suppose we have a bar of length 2Lwith −L ≤ x ≤ L and initial temperature

θ(x, 0) = H(x) =
{

1 if 0 ≤ x ≤ L

0 if − L ≤ x < 0
(4.8)

with boundary conditions

θ(L, t) = 1, θ(−L, t) = 0. (4.9)

§4.4.1 Transforming boundary conditions

Currently the boundary conditions eq. (4.9) are not homogeneous, so Sturm-Liouville
theory cannot be used directly. If we can identify a steady-state solution (time-
independent) that reflects the late-time behaviour, then we can turn it into a homogen-
eous set of boundary conditions. We will try a solution of the form

θs(x) = Ax+B

since this certainly satisfies the diffusion equation. To satisfy the boundary conditions
eq. (4.9),

A = 1
2L

; B = 1
2

Hence we have a solution

θs = x+ L

2L
(4.10)

We will subtract this solution from our original equation for θ, giving

θ̂(x, t) = θ(x, t) − θs(x)

with homogeneous boundary conditions

θ̂(−L, t) = θ̂(L, t) = 0

and initial conditions

θ̂(x, 0) = H(x) − x+ L

2L
(4.11)
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§4.4.2 Seperation of variables

We will now separate variables in the usual way. We will consider the ansatz

θ̂(x, t) = X(x)T (t) =⇒ X ′′ = −λX; Ṫ = −DλT (4.12)

The boundary conditions imply λ > 0 and give the Fourier modesX(x) = A cos
√
λx+

B sin
√
λx. For cos

√
λL = 0, we require

√
λm = mπ

2L form odd. Also, sin
√
λL = 0 gives√

λn = nπ
L for n even. Since θ̂ is odd due to our initial conditions, we can take

Xn = Bn sin nπx
L

; λn = n2π2

L2

Substituting λn into eq. (4.12), Ṫ = −DλT , we have

Tn(t) = Cn exp
(

−Dn2π2

L2 t

)
.

In general, the solution is

θ̂(x, t) =
∞∑
n=1

bn sin nπx
L

exp
(

−Dn2π2

L2 t

)
(4.13)

§4.5 Particular solution to diffusion equation

At t = 0, we have a pure Fourier sine series. We can then impose the initial conditions
eq. (4.11), to give

bn = 1
L

∫ L

−L
φ̂(x, 0) sin nπx

L
dx

where

φ̂(x, 0) = H(x) − x+ L

2L
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Hence, we can use the half-range sine series and find

bn = 2
L

∫ L

0

(
H(x) − 1

2

)
sin nπx

L
dx︸ ︷︷ ︸

square wave/2, eq. (1.7)

− 2
L

∫ L

0

x

2L
sin nπx

L
dx︸ ︷︷ ︸

sawtooth/2L, eq. (1.6)

which gives

bn = 2
(2m− 1)π

− (−1)n+1

nπ

where n = 2m− 1, and the first term vanishes for n even. For n odd or even, we find the
same result

bn = 1
nπ

Hence

θ̂(x, t) =
∞∑
n=1

1
nπ

sin nπx
L

exp
(

−Dn
2π2

L2 t

)

For the inhomogeneous boundary conditions,

θ(x, t) = x+ L

2L
+ θ̂(x, t) (4.14)

The similarity solution 1
2

(
1 + erf( x

2
√
Dt

)
)
, eq. (4.7), is a good fit for early t (excellent for

t ≤ 1), but it does not necessarily satisfy the boundary conditions, so for large t it is a
bad approximation.

Plot with L = 1 and D = 1 insertpicture
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§5 The Laplace Equation

§5.1 Laplace’s equation

Laplace’s equation is

∇2φ = 0 (5.1)

This equation describes (among others) steady-state heat flow, potential theory F =
−∇φ, and incompressible fluid flow v = ∇φ. The equation eq. (5.1) is solved typically
on a domainD, where boundary conditions are specified often on the boundary surface.
The Dirichlet boundary conditions fix φ on the boundary surface ∂D. The Neumann
boundary conditions fix n̂ · ∇φ on ∂D.

§5.2 Laplace’s equation in three-dimensional Cartesian coordinates

In R3 with Cartesian coordinates, Laplace’s equation becomes

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0 (5.2)

We seek separable solutions in the usual way:

φ(x, y, z) = X(x)Y (y)Z(z)

Substituting,

X ′′Y Z +XY ′′Z +XY Z ′′ = 0

Dividing by XY Z as usual,

X ′′

X
= −Y ′′

Y
− Z ′′

Z
= −λℓ (constant)

Y ′′

Y
= −Z ′′

Z
− X ′′

X
= −λm (constant)

Z ′′

Z
= −X ′′

X
− Y ′′

Y
= −λn = λℓ + λm

From the eigenmodes, our general solution will be of the form

φ(x, y, z) =
∑
ℓ,m,n

aℓmnXℓ(x)Ym(y)Zn(z) (5.4)
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Example 5.1 (Steady heat conduction)
Consider steady (∂φ∂t = 0) heat flowa in a semi-infinite rectangular bar, with bound-
ary conditions φ = 0 at x = 0, x = a, y = 0 and y = b; and φ = 1 at z = 0 and φ → 0
as z → ∞.

We will solve for each eigenmode successively. First, consider X ′′ = −λℓX with
X(0) = X(a) = 0. This gives

λℓ = l2π2

a2 ; Xℓ = sin ℓπx
a

where ℓ > 0, ℓ ∈ N. By symmetry,

λm = m2π2

b2 ; Ym = sin mπy
b

For the z mode,

Z ′′ = −λnZ = (λℓ + λm)Z = π2
(
ℓ2

a2 + m2

b2

)
Z

Since φ → 0 as z → ∞, the growing exponentials must vanish. Therefore,

Zℓm = exp

−
(
ℓ2

a2 + m2

b2

)1/2

πz


Thus the general solution eq. (5.4) becomes

φ(x, y, z) =
∑
ℓ,m

aℓm sin ℓπx
a

sin mπy
b

exp

−
(
ℓ2

a2 + m2

b2

)1/2

πz
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Now, we will fix aℓm using φ(x, y, 0) = 1 using the Fourier sine series eq. (1.12).

aℓm = 2
b

∫ b

0

2
a

∫ a

0
1 sin ℓπx

a︸ ︷︷ ︸
square wave

sin mπy
b︸ ︷︷ ︸

square wave

dx dy

So only the odd terms remain, giving

aℓm = 4a
a(2k − 1)π

· 4b
b(2p− 1)π

where ℓ = 2k − 1 is odd andm = 2p− 1 is odd. Simplifying,

aℓm = 16
π2ℓm

for ℓ,m odd

So the heat flow solution is

φ(x, y, z) =
∑

ℓ,m odd

16
π2ℓm

sin ℓπx
a

sin ℓπy
b

exp

−
(
ℓ2

a2 + m2

b2

)1/2

πz


As z increases, every contribution but the lowest mode will be very small. So low
ℓ,m dominate the solution.

Cross sectionals: insertpicture
ai.e. eq. (4.3) with ∂φ

∂t
= 0 gives eq. (5.1)

§5.3 Laplace’s equation in plane polar coordinates

In plane polar coordinates, Laplace’s equation becomes

1
r

∂

∂r

(
r
∂φ

∂r

)
+ 1
r2
∂2φ

∂θ2 = 0 (5.6)

Consider a separable form of the answer, given by

φ(r, θ) = R(r)Θ(θ)

We then have

Θ′′ + µΘ = 0; r(rR′)′ − µR = 0

54



§5.3.1 Polar equation

The polar equation can be solved easily by considering periodic boundary conditions.
This gives µ = m2 and the eigenmodes as in eq. (3.25)

Θm(θ) = cosmθ, sinmθ

§5.3.2 Radial equation

The radial equation is not Bessel’s equation, since there is no second separation constant.
We simply have

r(rR′)′ −m2R = 0 (5.7)

We will try a power law solution, R = αrβ . We find

β2 −m2 = 0 =⇒ β = ±m

So the eigenfunctions are

Rm(r) = rm, r−m

which is one regular solution at the origin and one singular solution.
In the casem = 0, we have

(rR′)′ = 0 =⇒ rR′ = constant =⇒ R = log r

So

R0(r) = constant or log r

The general solution is therefore

φ(r, θ) = a0
2

+ c0 log r +
∞∑
m=1

(am cosmθ + bm sinmθ)rm +
∞∑
m=1

(cm cosmθ + dm sinmθ)r−m

(5.8)

Example 5.2 (Soap Film on a Unit Disc)
insertpicture

Consider a soap film on a unit disc. We wish to solve Laplace’s equation eq. (5.6)
with a vertically distorted circular wire of radius r = 1 with boundary conditions
φ(1, θ) = f(θ). The z displacement of the wire produces the f(θ) term. We wish
to find φ(r, θ) for r < 1, assuming regularity at r = 0. Then, cm = dm = 0 and so
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eq. (5.8) becomes

φ(r, θ) = a0
2

+
∞∑
m=1

(am cosmθ + bm sinmθ)rm

At r = 1,

φ(1, θ) = f(θ) = a0
2

+
∞∑
m=1

(am cosmθ + bm sinmθ)

which is exactly the Fourier series. Thus by eq. (1.5),

am = 1
π

∫ 2π

0
f(θ) cosmθ dθ ; bm = 1

π

∫ 2π

0
f(θ) sinmθ dθ

We can see from the equation that high harmonics are confined to have effects only
near r = 1.

§5.4 Laplace’s equation in cylindrical polar coordinates

In cylindrical coordinates,

1
r

∂

∂r

(
r
∂φ

∂r

)
+ 1
r2
∂2φ

∂θ2 + ∂2φ

∂z2 = 0 (5.9)

With φ = R(r)Θ(θ)Z(z), we find

Θ′′ = −µΘ; Z ′′ = λZ; r(rR′)′ + (λr2 − µ)R = 0

The polar equation can be easily solved (as before) by

µm = m2; Θm(θ) = cosmθ, sinmθ
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The radial equation is Bessel’s equation eq. (3.26), giving solutions

R = Jm(kr), Ym(kr)

Setting boundary conditions in the usual way, defining R = 0 at r = ameans that

Jm(ka) = 0 =⇒ k = jmn
6

a

The radial solution is

Rmn(r) = Jm

(
jmn
a
r

)
(5.10)

We have eliminated the Yn term since we require r = 0 to give a finite φ and Yn → −∞
as r → 0.

Finally, the z equation gives

Z ′′ = k2Z =⇒ Z = e−kz, ekz

We typically eliminate the ekz mode due to boundary conditions, such as Z → 0 as
z → ∞. The general solution is therefore

φ(r, θ, z) =
∞∑
m=0

∞∑
n=1

(amn cosmθ + bmn sinmθ)Jm
(
jmn
a
r

)
e− jmnr

a (5.11)

Exercise 5.1. Describe steady-state heat flow in a semi-infinite circular wire with b.c.s
φ = 0 at r = a, φ = T0 at z = 0 and φ → 0 as z → ∞. Use sections 3.9 and 5.1. Show
that the soln is φ(r, θ, z) =

∑∞
n=1

2T0
j0nJ1(j0n)J0

(
j0n

a r
)
e− j0nz

a .

§5.5 Laplace’s equation in spherical polar coordinates

Recall that

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

dV = r2 sin θ dr dθ dφ

with 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

In spherical polar coordinates Laplace’s equations eq. (5.1) becomes,

1
r2

∂

∂r

(
r2∂Φ
∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂Φ

∂θ

)
+ 1
r2 sin2 θ

∂2Φ
∂φ2 = 0 (5.12)
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We will consider the axisymmetric case; supposing that there is no φ dependence. We
seek a separable solution of the form

Φ(r, θ) = R(r)Θ(θ)

which gives

(sin θΘ′)′ + λ sin θΘ = 0; (r2R′)′ − λR = 0 (5.13)

§5.5.1 Polar (Legendere) equation

Consider the substitution θ 7→ xwith x = cos θ, dx
dθ = − sin θ in the polar equation. This

gives dΘ
dθ = − sin θ dΘ

dx and hence

− sin θ d
dx

[
− sin2 θ

dΘ
dx

]
+ λ sin θΘ = 0 =⇒ d

dx

[
(1 − x2)dΘ

dx

]
+ λΘ = 0

This gives Legendre’s equation eq. (2.21), so it has solutions of eigenvalues λℓ = ℓ(ℓ+1)
and eigenfunctions section 2.11

Θℓ(θ) = Pℓ(x) = Pℓ(cos θ) (5.14)

§5.5.2 Radial equation

The radial equation then gives

(r2R′)′ − ℓ(ℓ+ 1)R = 0

We will seek power law solutions: R = αrβ . This gives

β(β + 1) − ℓ(ℓ+ 1) = 0 =⇒ β = ℓ, β = −ℓ− 1

Thus the radial eigenmodes are

Rℓ = rℓ, r−ℓ−1

§5.6 General axisymmetric solution

Therefore the general axisymmetric solution for spherical polar coordinates is

Φ(r, θ) =
∞∑
ℓ=0

(aℓrℓ + bℓr
−ℓ−1)Pℓ(cos θ) (5.15)

The aℓ, bℓ are determined by the boundary conditions. Orthogonality conditions for the
Pℓ can be used to determine coefficients (see eq. (2.24)).

58



Example 5.3
Consider a solution to Laplace’s equation on the unit sphere with axisymmetric
boundary conditions at r = 1 given by

Φ(1, θ) = f(θ)

Given that we wish to find the interior solution, bn = 0 by regularity. Then,

f(θ) =
∞∑
ℓ=0

aℓPℓ(cos θ)

By defining f(θ) = F (cos θ),

F (x) =
∞∑
ℓ=0

aℓPℓ(x)

We can then find the coefficients in the usual way, given by eq. (2.25)

aℓ = 2ℓ+ 1
2

∫ 1

−1
F (x)Pℓ(x) dx .

Exercise 5.2. Show f(θ) = sin2 θ yields a solution Φ(r, θ) = 2
3(1 − P2(cos θ)r2)

§5.7 Generating function for Legendre polynomials

Consider a charge at r0 = (x, y, z) = (0, 0, 1). Then, the potential at a point P (represen-
ted by r = (x, y, z)) becomes

Φ(r) = 1
|r − r0|

= 1
(x2 + y2 + (x− 1)2)1/2

= 1
(r2(sin2 φ+ cos2 φ) sin2 θ

x2+y2

+r2 cos2 θ − 2r cos θ + 1)1/2 in spherical coordinates

= 1
(r2 sin2 θ + r2 cos2 θ − 2r cos θ + 1)1/2

= 1
(r2 − 2r cos θ + 1)1/2

= 1
(r2 − 2rx+ 1)1/2

where x ≡ cos θ. This function Φ is a solution to Laplace’s equation where r 6= r0.

Exercise 5.3. Verify Φ = 1
|r−r0| satisfies ∇2Φ = 0 where r 6= r0.
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Note that we can represent any axisymmetric solution eq. (5.12) as a sum of Legendre
polynomials eq. (5.15) (with bn = 0) for r < 1. Now,

1√
r2 − 2rx+ 1

=
∞∑
ℓ=0

aℓPℓ(x)rℓ

With the normalisation condition for the Legendre polynomials Pℓ(1) = 1 at x = 1, we
find

1
1 − r

=
∞∑
ℓ=0

aℓr
ℓ

Using the geometric series expansion ( 1
1−r = 1 + r+ r2 + . . . ), we arrive at aℓ = 1. This

gives

1√
r2 − 2rx+ 1

=
∞∑
ℓ=0

Pℓ(x)rℓ (5.16)

which is the generating function for the Legendre polynomials. Expand LHS with bino-
mial theorem to find Pℓ(x) (coeff of rℓth term). Use to obtain normalisation condition
eq. (2.24) (Sheet 2, Q5).

Example 5.4 (Electric multipoles)
Consider charges along z−axis at z = ±a, 0, viewed from x >> a with φ → 0 as
r → ∞ (i.e. an = 0, singular part of expansion eq. (5.15)).

ℓ = 0:

Φ ∝ 1
r - monopole field of point charge q.

ℓ = 1:
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Φ ∝ cos θ
r2 - dipole field for two opposite charges.

ℓ = 2

Φ ∝ 1
2

3 cos2 θ−1
r3 quadrupole field.
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Part III
Inhomogenous ODEs; Fourier
Transforms
§6 Dirac delta function

Definition 6.1 (Dirac Delta Function)
We define a generalised function δ(x− ξ) such that

δ(x− ξ) = 0 ∀ x 6= ξ;∫ ∞

−∞
δ(x− ξ) dx = 1.

(6.1)

This acts as a linear operator
∫

dx δ(x−ξ) on some arbitrary function f(x) to produce
a number f(ξ). ∫ ∞

−∞
dx δ(x− ξ)f(x) = f(ξ) (6.2)

This relationship holds provided that f(x) is sufficiently ‘well-behaved’ at x = ξ
and x → ±∞.

Note. • Strictly, the δ ‘function’ is classified as a distribution, not as a function. See
lectures notes of Jozsa and Skinner section 6.1 for more details.

• For this reason, we will never use δ outside an integral, although such an integral
may be implied.

• The δ function represents a unit point source (e.g. mass, charge) or an impulse.

§6.1 Some limiting approximations

A discrete approximation as n → ∞ is δn =


0 x > 1

n
n
2 |x| ≤ 1

n

0 x < − 1
n

.

Continuous: We can approximate the δ function using a Gaussian approximation as
ε → 0.

δε(x) = 1
ε
√
π

exp
[
−x2

ε2

]
(6.3)
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Figure 1: Discrete approximation

Therefore verifying eq. (6.2),
∫ ∞

−∞
f(x)δ(x) dx = lim

ε→0

∫ ∞

−∞

1
ε
√
π

exp
[
−x2

ε2

]
f(x) dx

Let y = x
ε ,

= lim
ε→0

∫ ∞

−∞

1√
π

exp
[
−y2

]
f(εy) dy

= lim
ε→0

∫ ∞

−∞

1√
π

exp
[
−y2

]
[f(0) + εyf ′(0) + · · · ] dy

= f(0)

for all ‘well-behaved functions’ f at 0,±∞7.

−3 −2 −1 0 1 2 3
0

1

2

3

4

x

δ ε
(x

)

= 2−3

= 2−2

= 2−1

= 20

7Well behaved at 0 lets us taylor expand and well behaved at ±∞ means it doesn’t diverge faster than the
Gaussian.
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Further Examples We could alternatively use the Dirichlet kernel (as n → ∞)

δn(x) = sinnx
πx

= 1
2π

∫ n

−n
eikx dk (6.4)

or even

δn(x) = n

2
sech2 nx (6.5)

§6.2 Integral and derivative of delta function

§6.2.1 Integral of δ(x)

We define the Heaviside step function by

H(x) =
{

1 x ≥ 0
0 x < 0

(6.6)

For x 6= 0, we have

H(x) =
∫ x

−∞
δ(t) dt (6.7)

Thus,
d

dx
H(x) = δ(x)

where this identification takes place under an implied integral.

Exercise 6.1. Verify using eq. (6.5) δ(x) = limn→∞
n
2 sech2 nx [Youwill find 1

2(tanhnx+
1) which is an approximate step function. This also gives H(0) = 1

2 (an alternative
definition)].

§6.2.2 Derivative of δ(x)

We define δ′(x) using integration by parts.∫ ∞

−∞
δ′(x− ξ)f(x) dx = [δ(x− ξ)f(x)]∞−∞ −

∫ ∞

−∞
δ(x− ξ)f ′(x) dx

= −
∫ ∞

−∞
δ(x− ξ)f ′(x) dx∫ ∞

−∞
δ′(x− ξ)f(x) dx = −f ′(ξ) (6.8)

This is valid for all f that are smooth at x = ξ.
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Example 6.1
Consider the Gaussian approximation eq. (6.3):

δε(x) = 1
ε
√
π

exp
[
−x2

ε2

]

Then,

δ′
ε(x) = −2x

ε3√
π

exp
[
−x2

ε2

]

−3 −2 −1 0 1 2 3

−30

−20

−10

0

10

20

30

x

δ′ ε
(x

)

= 2−3

= 2−2

= 2−1

= 20

§6.3 Properties of delta function

§6.3.1 Sampling Property

Note that ∫ b

a
f(x)δ(x− ξ) dx =

{
f(ξ) a < ξ < b

0 otherwise
(6.9)

So the δ function only ‘samples’ values within the integral range. This is known as the
sampling property.

§6.3.2 Even Property

Let u = −(x− ξ), and consider∫ ∞

−∞
f(x)δ(−(x− ξ)) dx =

∫ −∞

∞
f(ξ − u)δ(u)(− du)
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=
∫ ∞

−∞
f(ξ − u)δ(u) du

= f(ξ)

Hence, ∫ ∞

−∞
f(x)δ(−(x− ξ)) dx =

∫ ∞

−∞
f(x)δ(x− ξ) dx (6.10)

This is called the even property.

§6.3.3 Scaling Property

Now, consider ∫ ∞

−∞
f(x)δ(a(x− ξ)) dx = 1

|a|
f(ξ) (6.11)

Exercise 6.2. Show this using u = ax (noting integral limit order with a < 0).

§6.3.4 Advanced Scaling Property

Let g(x) be a function with n isolated roots at x1, . . . , xn. Then, assuming g′(x) does not
vanish at the xi,

δ(g(x)) =
n∑
i=1

δ(x− xi)
|g′(xi)|

(6.12)

This is a generalisation of the above, known as the advanced scaling property.

Exercise 6.3. Show for g has 1 root at x = xi.

Example 6.2

I =
∫ ∞

−∞
f(x)δ(x2 − 1) dx

=
∫ 1+ε

1−ε
f(x)δ(x− 1)

|2x|
dx+

∫ −1+ε

−1−ε
f(x)δ(x+ 1)

|2x|
dx

= 1
2

(f(1) + f(−1)).

66



§6.3.5 Isolation Property

Now, if g(x) is continuous at x = 0, then

g(x)δ(x) = g(0)δ(x) (6.13)

inside an integral.

Exercise 6.4. Evaluate and show
∫∞

0 δ′(x2 − 1)x2 dx = −1
4 using u = x2 − 1 and eq. (6.8)

and eq. (6.12).

§6.4 Fourier series expansion of delta function

Consider a complex Fourier series expansion,

δ(x) =
∞∑

n=−∞
cne

inπx/L; cn = 1
2L

∫ L

−L
δ(x)e−inπx/L dx = 1

2L

Hence,

δ(x) = 1
2L

∞∑
n=−∞

einπx/L (6.14)

Let f(x) be a function, so f(x) =
∑∞
n=−∞ dne

inπx/L. Then (using section 2.2), their inner
product is given by∫ L

−L
f⋆(x)δ(x) dx = 1

2L

∞∑
n=−∞

dn

∫ L

−L
einπx/Leinπx/L dx =

∞∑
n=−∞

dn = f(0)

The Fourier expansion of the δ function can be extended periodically to the whole real
line. This infinite set of δ functions is known as the Dirac comb, given by

∞∑
m=−∞

δ(x− 2mL) = 1
2L

∞∑
n=−∞

einπx/L

§6.5 Arbitrary eigenfunction expansion of delta function

In general, suppose

δ(x− ξ) =
∞∑
n=1

anyn(x), a ≤ x ≤ b
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with coefficients, eq. (2.17)

an =
∫ b
a w(x)yn(x)δ(x− ξ) dx∫ b

a w(x)yn(x)2 dx

= w(ξ)yn(ξ)∫ b
a w(x)yn(x)2 dx

= wn(ξ)Yn(ξ) for unit norm eq. (2.18)

Then,

δ(x− ξ) = w(ξ)
∞∑
n=1

Yn(ξ)Yn(x) = w(x)
∞∑
n=1

Yn(ξ)Yn(x)

since w(x)
w(ξ) δ(x− ξ) = δ(x− ξ) by eq. (6.13). Hence,

δ(x− ξ) = w(x)
∞∑
n=1

yn(ξ)yn(x)
Nn

(6.15)

where Nn =
∫ b
a wy

2
n dx is a normalisation factor.

Example 6.3
Consider a Fourier series for y(0) = y(1) = 0, with yn(x) = sinnπx. From the sine
series coefficient expression eq. (1.11),

δ(x− ξ) = 2
∞∑
n=1

sinnπξ sinnπx

where 0 < ξ < 1.

Exercise 6.5. 1. Integrate both sides to show∑∞
m=1

(−1)m+1

2m−1 = 1
4 when ε = 1

2 .

2. Integrate twice and compare with G(x, ξ) ?? or eq. (2.31).
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§7 Green’s Functions

§7.1 Physical motivation: Static Forces on a String

Consider a massive static string with tension T and linear mass density µ, suspended
between fixed ends (L = 1)

y(0) = y(1) = 0. (7.1)

By resolving forces, we have the time independent form eq. (3.3)

T
d2y

dx2 − µg = 0

We will solve the inhomogeneous ODE

−d2y

dx2 = f(x) (7.2)

with f(x) = −µg
T subject to eq. (7.1).

§7.1.1 Direct integration

This has been placed in Sturm-Liouville form. We can integrate directly andfind eq. (7.2)
gives

−y = −µg

2T
x2 + k1x+ k2

Imposing boundary conditions eq. (7.1),

y(x) =
(

−µg

T

)
· 1

2
x(1 − x) (7.3)

§7.1.2 Superposition of point masses

Consider alternatively a solution obtained by solving the equation for a single point
mass δm = µδx suspended at x = ξi on an very light string. We can then superimpose
the solutions for each pointmass to find the overall solution. For a single pointmass, the
solution is given by two straight lines from (0, 0) and (1, 0) to the point mass (ξi, yi(ξi)).
The angles of these straight lines from the horizontal are given by θ1, θ2. Resolving in
the y direction to find yi(ξi),

0 = T (sin θ1 + sin θ2) − δmg

= T

(−yi
ξi

+ −yi
1 − ξi

)
− δmg
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∴ −T (yi(1 − ξi) + yiξi) = δmgξi(1 − ξi)

∴ yi(ξi) = −δmg
T

ξi(1 − ξi)

So the solution is

yi(x) = −δmg
T

{
x(1 − ξi) x < ξi

ξi(1 − x) x > ξi

which is the generalised sawtooth. This can alternatively be written

yi(x) = fi(ξ)G(x, ξ) (7.4)

where fi is a source term, and G(x, ξ) is the Green’s function, the solution for a unit
point source. Since the differential equation is linear, we can sum the solutions for N
point masses, giving

y(x) =
N∑
i=1

fi(ξ)G(x, ξi)

Taking a continuum limit,

fi(ξ) = −δmg
T

= −µδxg
T

≡ f(x) dx =⇒ f(x) = −µg
T

which gives (x 7→ ξ)

y(x) =
∫ 1

0
f(ξ)G(x, ξ) dξ (7.5)

where we are integrating over all source positions. Substituting the Green’s function,

y(x) =
(−µg

T

)
∫ x

0
ξ(1 − x) dξ

x>ξ

+
∫ 1

x
x(1 − ξ) dξ

x<ξ


=
(−µg

T

)
[
ξ2

2
(1 − x)

]x
0

+
[
x

(
ξ − ξ2

2

)]1

x
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=
(−µg

T

)(
x2

2
(1 − x) − 0 + x

2
− x

(
x− x2

2

))

=
(−µg

T

)
· 1

2
x(1 − x)

So we have found the correct solution in two ways; once by direct integration, and
once by superimposing point solutions. In general, direct integration is not trivial, and
Green’s functions are useful in this case.

§7.2 Definition of Green’s function

We wish to solve the inhomogeneous ODE eq. (2.21)

Ly ≡ α(x)y′′ + β(x)y′ + γ(x)y = f(x) (7.6)

on a ≤ x ≤ b, where α 6= 0 and α, β, γ are continuous and bounded, taking homogen-
eous boundary conditions y(a) = y(b) = 0.
The Green’s function for L in this case is defined to be the solution for a unit point source
at x = ξ. That is, G(x, ξ) is the function that satisfies the boundary conditions and

LG(x, ξ) = δ(x− ξ) (7.7)

so G(a, ξ) = G(b, ξ) = 0. Then, by linearity, the general solution is given by

y(x) =
∫ b

a
f(ξ)G(x, ξ) dξ (7.8)

where y(x) satisfies the homogeneous boundary conditions. We can verify this by check-
ing

Ly =
∫ b

a
L(x)G(x, ξ)f(ξ) dξ =

∫ b

a
δ(x− ξ)f(ξ) dξ = f(x)

So the solution is given by the inverse operator

y = L−1f ; L−1 =
∫ b

a
dξ G(x, ξ)

§7.3 Defining properties (summary)

The Green’s function spits into two parts;

G(x, ξ) =
{
G1(x, ξ) a ≤ x < ξ

G2(x, ξ) ξ < x ≤ b
(7.9)
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1. Hom solns G solves homogenous equation ∀ x 6= ξ so

LG1 = LG2 = 0 (7.10)

2. Hom b.c.s G satisfies the homogeneous boundary conditions, so

G1(a, ξ) = 0, G2(b, ξ) = 0 (7.11)

3. Continuity condition Gmust be continuous at x = ξ, hence

G1(ξ, ξ) = G2(ξ, ξ) (7.12)

4. Jump condition There is a jump condition; the derivative of G is discontinuous at
x = ξ. This satisfies

[G′]ξ+
ξ−

= dG2
dx

∣∣∣∣
x=ξ+

− dG1
dx

∣∣∣∣
x=ξ−

= 1
α(ξ)

(7.13)

where α(x) is defined in eq. (7.6).

§7.4 Explicit form for Green’s functions

We want to solve

LG(x, ξ) = δ(x− ξ)

on a ≤ x ≤ b, subject to homogeneous boundary conditions G(a, ξ) = G(b, ξ) = 0 (with
a < ξ < b). The functionsG1, G2 satisfy the homogeneous equation, so LGi(x, ξ) = 0.

§7.4.1 1 & 2, Solve hom eqn with hom b.cs

Suppose there exist two independent homogeneous solutions y1(x), y2(x) to Ly = 0.
Then,G1 = Ay1 +By2, such thatAy1(a)+By2(a) = 0, which gives a constraint between
A andB. This defines a complementary function y−(x) such that y−(a) = 0. The general
homogeneous solution with G1(a) = 0 is

G1 = Cy− (7.14)

C will be found later.

Similarly we can define y+ as a linear combination of y1, y2 such that y+(b) = 0.

G2 = Dy+ (7.15)

72



§7.4.2 3. Why is G continuous at x = ξ?

Suppose G was discontinuous at x = ξ, so locally G ∝ H(x − ξ) + . . . eq. (6.7) which
implies G′ ∝ δ(x− ξ) and G′′ ∝ δ′(x− ξ). So LHS LG ∝ α(x)δ′(x− ξ) + β(x)δ(x− ξ) +
γ(x)H(x− ξ). But on RHS there is not δ′(x− ξ) 6= δ(x− ξ) E. Hence, we have [G]ξ

+

ξ−
= 0,

so we require G1(ξ, ξ) = G2(ξ, ξ) for continuity, hence

Cy−(ξ) = Dy+(ξ) (7.16)

§7.4.3 4. Why the jump condition for G′ at x = ξ

Integrate LG(x, ξ) = δ(x− ξ) across x = ξ:

LHS =
∫ ξ+

ξ−
LGdx

=
∫ ξ+

ξ−
αG′′ + βG′ + γG dx

Integrate by parts

= α(ξ)[G′]ξ
+

ξ−

by cty of α(x)

+(β − α′)[G]ξ
+

ξ−
+
∫ ξ+

ξ−
(γ − β′ + α′′)Gdx

The latter two terms are 0 as ξ+ → ξ− by continuity of Green’s function eq. (7.12).
RHS =

∫ ξ+

ξ−
δ(x− ξ) dx = 1.

Thus [G′]ξ
+

ξ−
= 1

α(ξ) , we have

Dy′
+(ξ) − Cy′

−(ξ) = 1
α(ξ)

(7.17)

We can solve these equations eqs. (7.16) and (7.17) for C,D simultaneously to find

C(ξ) = y+(ξ)
α(ξ)W (ξ)

; D(ξ) = y−(ξ)
α(ξ)W (ξ)

(7.18)

whereW (ξ) is the Wronskian

W (ξ) = y−(ξ)y′
+(ξ) − y+(ξ)y′

−(ξ) (7.19)

which is nonzero if y−, y+ are linearly independent. Hence,

G(x, ξ) =


y−(x)y+(ξ)
α(ξ)W (ξ) a ≤ x ≤ ξ
y−(ξ)y+(x)
α(ξ)W (ξ) ξ ≤ x ≤ b

(7.20)
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§7.5 Solving boundary value problems

We know that the solution of Ly = f eq. (7.6) with y(a) = y(b) = 0 is

y(x) =
∫ b

a
G(x, ξ)f(ξ) dξ

We can split this into two intervals given that G = G1 for ξ > x and G = G2 for ξ < x.

y(x) =
∫ x

a
G2(x, ξ)f(ξ) dξ +

∫ b

x
G1(x, ξ)f(ξ) dξ

= y+(x)
∫ x

a

y−(ξ)f(ξ)
α(ξ)W (ξ)

dξ + y−(x)
∫ x

a

y+(ξ)f(ξ)
α(ξ)W (ξ)

dξ (7.21)

Note. 1. Note that if L is in Sturm-Liouville form, so β = α′, then the denominator
α(ξ)W (ξ) is a constant and G is symmetric; G(x, ξ) = G(ξ, x).

Exercise 7.1. Show that d
dx(α(x)W (x)) = 0 using β = α′ and self-adjoint form

eq. (2.10) y−Ly+ − y+Ly−.

2. Often, by convention, we take α = 1 (however Sturm-Liouville form typically
takes α < 0).

3. Indefinite integrals
∫
x in eq. (7.21) are particular integrals in general solution

eq. (2.5).

Exercise 7.2. For −y′′ = f(x), y(0) = y(1) = 0 directly construct the Green’s func-
tion eq. (7.4)

G(x, ξ) =
{
x(1 − ξ) x ≤ ξ

ξ(1 − x) x > ξ

(i.e. using yhom = Ax+ b and α = −1).

Example 7.1
Consider y′′ − y = f(x) with y(0) = y(1) = 0. Let us construct G(x, ξ).

1 & 2Homogeneous solutions are y1 = ex, y2 = e−x. Imposing boundary conditions
(by inspection),

G =
{
C sinh x 0 ≤ x < ξ

D sinh(1 − x) ξ < x ≤ b

3 Continuity at x = ξ implies

C sinh ξ = D sinh(1 − ξ) =⇒ C = D
sinh(1 − ξ)

sinh ξ
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4 The jump condition is

−D cosh(1 − ξ) − C cosh ξ = 1

Hence,

−D[cosh(1 − ξ) sinh ξ + sinh(1 − ξ) cosh ξ] = sinh ξ
−D[sinh((1 − ξ) + ξ)] = sinh ξ

−D sinh 1 = sinh ξ

D = −sinh ξ
sinh 1

∴ C = − sinh(1 − ξ)
sinh 1

So the solution is,

y(x) = − sinh(1 − x)
sinh 1

∫ x

0
sinh ξf(ξ) dξ − sinh x

sinh 1

∫ 1

x
sinh(1 − ξ)f(ξ) dξ (7.22)

Suppose we have inhomogeneous boundary conditions. In this case, we want to find
a homogeneous solution yp that solves the inhomogeneous boundary conditions. That
is, Lyp = 0 but yp(a) 6= 0, yp(b) 6= 0 are as required for the inhomogeneous boundary
conditions.

Then, by subtracting this solution from the original equation, we can solve using a ho-
mogeneous set of boundary conditions. We can find Green’s fcn for Lyg = f with
yg(a) = yg(b) = 0 where yg = y − yp.

Example 7.2
Suppose y′′ − y = f(x) with y(0) = 0, y(1) = 1.

yp = A sinh x+B cosh x
yp(0) = 0 =⇒ B = 0

yp(1) = 1 =⇒ A = 1
sinh 1

Solve for yg = y−yp with yg(0) = yg(1) = 0. Solution y(x) = sinhx
sinh 1 +yg (i.e. solution

eq. (7.22)).

75



§7.6 Higher-order ODEs (BVP)

Suppose Ly = f(x) where L is an nth order linear differential operator, and α(x) is
the coefficient for the highest degree derivative (α(x) d

ny
dxn ). Suppose that homogeneous

boundary conditions are satisfied. Then we can define the Green’s function in this case
to be the function that solves

LG(x, ξ) = δ(x− ξ)

which has the properties:

1. G1, G2 are homogeneous solutions satisfying the homogeneous boundary condi-
tions;

2. G(k)
1 (ξ) = G

(k)
2 (ξ) for k ∈ {0, . . . , n− 2};

3. G(n−1)
2 (ξ+) −G

(n−1)
1 (ξ−) = 1

α(ξ) .

See Sheet 3, Q4

§7.7 Eigenfunction expansions of Green’s functions

Suppose L is in Sturm-Liouville formwith eigenfunctions yn(x) and eigenvalues λn. We
seek G(x, ξ) =

∑∞
n=1Anyn(x) satisfying LG = δ(x− ξ).

LG =
∑
n

AnLyn

=
∑
n

Anλnw(x)yn(x) by eq. (2.12)

The δ function has expansion

δ(x− ξ) = w(x)
∑
n

yn(ξ)yn(x)
Nn

by eq. (6.15) where Nn =
∫
wy2

n dx

Hence,

An(ξ) = yn(ξ)
λnNn

Thus,

G(x, ξ) =
∞∑
n=1

yn(ξ)yn(x)
λn
∫
wy2

n dx
(7.23)

=
∞∑
n=1

Yn(ξ)YN (x)
λn

(unit norm)

which was already obtained earlier in the course when studying Sturm-Liouville theory
in eq. (2.31).

76



§7.8 Constructing Green’s function for an initial value problem

Suppose we want to solve

Ly = f(t) for t ≥ awith y(a) = y′(a) = 0, (7.24)

using G(t, τ) satisfying LG = δ(t− τ) with the same b.cs.

For t < τ , we have

G1 = Ay1(t) +By2(t); Ay1(a) +By2(a) = 0; Ay′
1(a) +By′

2(a) = 0

IfA 6= B 6= 0, then we can solve this by dividing outA,B and find y1y
′
2 −y2y

′
1 = 0. Since

the Wronskian at a cannot be zero, A = B = 0. So G1(t, τ) ≡ 0 for a ≤ t < τ , so there is
no change until the ‘impulse’ at t = τ .

For t > τ , by continuity, eq. (7.12), we must have G2(τ, τ) = 0. So we choose a comple-
mentary function G2 = Dy+(t) with y+(t) = Ay1(t) + By2(t), and b.c y+(τ) = 0. The
discontinuity in the derivative, eq. (7.13), implies that

G′
2(τ, τ) −G′

1(τ, τ)
0

= Dy′
+(τ) = 1

α(τ)

Hence,

Ay′
1(τ) +By′

2(τ) = 1
α(τ)

=⇒ D(τ) = 1
α(τ)y′

+(τ)

or we can find soln for A,B directly.

Hence we have a non-trivial solution

G(t, τ) =

0 t < τ
y+(t)

α(τ)y′
+(τ) t > τ

(7.25)

The initial value problem eq. (7.24) has solution

y(t) =
∫ t

a
G2(t, τ)f(τ) dτ =

∫ t

a

y+(t)f(τ)
y′

+(τ)
dτ (7.26)

Causality is ‘built in’ to this solution. Only forces which occur before t may have an
impact on y(t).

Example 7.3
Let us solve y′′ − y = f(t) with y(0) = y′(0) = 0. The homogeneous solution and
initial conditions are

t < τ =⇒ G1 ≡ 0
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and

t > τ =⇒ G2 = Aet +Be−t

By continuity G2(τ, τ) = 0 =⇒ G2 = D sinh(t− τ). Now,

[G′]τ+
τ− = 1

α(τ)
= 1 =⇒ G′

2(τ, τ) = D cosh 0 = D = 1

Hence, the solution eq. (7.26) is

y(t) =
∫ t

0
f(τ) sinh(t− τ) dτ
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§8 Fourier Transforms

§8.1 Definitions

Definition 8.1 (Fourier transform)
The Fourier transform of a function f(x) is

f̃(k) = F(f)(k) =
∫ ∞

−∞
f(x)e−ikx dx (8.1)

The inverse Fourier transform is

f(x) = F−1
(
f̃
)
(x) = 1

2π

∫ ∞

−∞
f̃(k)eikx dk (8.2)

Different internally-consistent definitions exist, which distribute the multiplicative
constants in different ways.

Theorem 8.1 (Fourier inversion theorem)
For a function f(x),

F−1(F(f))(x) = f(x) (8.3)

with a sufficient condition that f and f̃ are absolutely integrable, so∫ ∞

−∞
|f(x)| dx = M < ∞.

In particular, f → 0 as x → ±∞.

Example 8.1
Consider the Gaussian,

f(x) = 1
σ

√
π

exp
[
−x2

σ2

]
(8.4)

We wish to compute its Fourier transform. Since i sin kx is an odd function,

f̃(k) = 1
σ

√
π

∫ ∞

−∞
exp

[
−x2

σ2

]
exp[−ikx] dx = 1

σ
√
π

∫ ∞

−∞
exp

[
−x2

σ2

]
cos(kx) dx
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Consider, using Leibniz’ rule,

df̃
dk

= −1
σ

√
π

∫ ∞

−∞
x exp

[
−x2

σ2

]
sin kx dx

Integrating by parts,

df̃
dk

= 1
σ

√
π

[
σ2

2
exp

[
−x2

σ2

]
sin kx

]∞

−∞
0

− 1
σ

√
π

∫ ∞

−∞

kσ2

2
exp

[
−x2

σ2

]
cos kx dx

= −kσ2

2
f̃(k)

This is a differential equation for f̃ , which gives

f̃(k) = C exp
[
−k2σ2

4

]

Suppose k = 0. Then, in the original expression for the Fourier transform, we can
directly find f̃(0) = 1. Hence C exp

[
−02σ2

4

]
= 1 =⇒ C = 1. Hence,

f̃(k) = exp
[
−k2σ2

4

]
(8.5)

which is another Gaussian with the width parameter inverted.

Exercise 8.2. Show that F−1(e−k2σ2/4) = f(x) (try completing the square).

Exercise 8.3. Show that f(x) = e−a|x|, a > 0, has FT

f̃ = 2a
a2 + k2 (8.6)

in two ways.

1. Integrate 2
∫∞

0 e−ax cos kx dx by parts twice.

2. Integrate
∫∞

0 e−(a−ik)x dx+
∫ 0

−∞ e(a+ik)x dx directly.

Note that if f(x) =
{
e−ax x > 0
0 x ≤ 0

(a > 0) then

f̃(k) = 1
ik + a

(8.6a)
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§8.2 Converting Fourier series into Fourier transforms

Recall that the complex form of the Fourier series, eq. (1.13), is

f(x) =
∞∑

n=−∞
cne

iknx

where kn = nπ
L . We can write in particular kn = n∆k where ∆k = π

L . Then,

cn = 1
2L

∫ L

−L
f(x)e−iknx dx = ∆k

2π

∫ L

−L
f(x)e−iknx dx

Now, re-substituting into the Fourier series,

f(x) =
∞∑

n=−∞

∆k
2π

eiknx
∫ L

−L
f(x′)e−iknx′ dx′

But interpreting the sum multiplied by ∆k as a Riemann integral,
∞∑

n=−∞
∆kg(kn) →

∫ ∞

−∞
g(k) dk (8.6b)

So,

f(x) →
∫ ∞

−∞

1
2π
eiknx

∫ L

−L
f(x′)e−ikx′ dx′ dk

Taking the limit L → ∞,

f(x) = 1
2π

∫ ∞

−∞
dk eikx

∫ ∞

−∞
dx′ f(x′)e−iknx′

which is the inverse Fourier transform of the Fourier transform of f , which gives the
Fourier inversion theorem. Note that when f(x) is discontinuous at x, the Fourier trans-
form gives

F−1(F(f))(x) = 1
2

(f(x−) + f(x+)) (8.7)

which is analogous to the result for Fourier series.

§8.3 Properties of Fourier series

Recall the definition of the Fourier transform.

f̃(k) =
∫ ∞

−∞
f(x)e−ikx dx
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Proposition 8.1 (Linearity)
The (inverse) Fourier transform is linear.

h(x) = λf(x) + µg(x) ⇐⇒ h̃(k) = λf̃(k) + µg̃(k) (8.8)

Proposition 8.2 (Translation)
Translated functions transform to multiplicative factors.

h(x) = f(x− λ) ⇐⇒ h̃(k) = e−iλkf̃(k) (8.9)

Proof. This is because

h̃(k) =
∫
f(x− λ)e−ikx dx =

∫
f(y)e−ik(y+λ) dy = e−iλkf̃(k)

Proposition 8.3 (Frequency Shift)
Frequency shifts transform to translations in frequency space.

h(x) = eiλxf(x) =⇒ h̃(k) = f̃(k − λ) (8.10)

Proposition 8.4 (Scaling)
A scalarmultiple applied to the argument transforms into an inverse scalarmultiple.

h(x) = f(λx) ⇐⇒ h̃(k) = 1
|λ|
f̃

(
k

λ

)
(8.11)

Proposition 8.5 (Multiplication by x)
Multiplication by x transforms into an imaginary derivative.

h(x) = xf(x) ⇐⇒ h̃(k) = if̃ ′(k) (8.12)

Proof. This is because∫ ∞

−∞
xf(x)e−ikx dx = −1

i

d
dk

∫ ∞

−∞
f(x)e−ikx dx
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Proposition 8.6 (Derivatives)
Derivatives transform into a multiplication by ik.

h(x) = f ′(x) ⇐⇒ h̃(k) = ikf̃(k) (8.13)

Proof. This is because we can integrate by parts and find

h̃(k) =
∫ ∞

−∞
f ′(x)e−ikx dx =

[
f(x)e−ikx

]∞
−∞︸ ︷︷ ︸

=0

+ik
∫ ∞

−∞
f(x)e−ikx dx

Proposition 8.7 (General duality)

g(x) = f̃(x) ⇐⇒ g̃(k) = 2πf(−k) (8.14)

Proof. Consider eq. (8.2) with mapping x 7→ −x, we get

f(−x) = 1
2π

∫ ∞

−∞
f̃(k)e−ikx dk .

Now swap k and x, treating f̃ now as a function in position space

f(−k) = 1
2π

∫ ∞

−∞
f̃(x)e−ikx dx .

Thus

g(x) = f̃(x) ⇐⇒ g̃(k) = 2πf(−k)

Corollary 8.1

f(−x) = 1
2π

F(F(f))(x)

Finally,

F4(f)(x) = 4π2f(x)
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Exercise 8.4. Verify these properties.

Example 8.2
Consider a function defined by

f(x) =
{

1 |x| ≤ a

0 otherwise

for some a > 0. By the definition of the Fourier transform,

f̃(k) =
∫ ∞

−∞
f(x)e−ikx dx =

∫ a

−a
e−ikx dx =

∫ a

−a
cos kx dx = 2

k
sin ka (8.15)

By the Fourier inversion theorem,

1
π

∫ ∞

−∞
eikx

1
k

sin ka dk = f(x)

for x 6= a.
Now, in this expression, letx = 0 and let k 7→ x. We arrive at theDirichlet discontinuous formula.

∫ ∞

0

sin ax
x

dx = π

2
sgn a =


π
2 a > 0
0 a = 0
−π

2 a < 0
(8.16)

Here, we allow a < 0, so sin(−ax) = − sin ax.

§8.4 Convolution theorem

We want to multiply Fourier transforms in the frequency domain (transformed space).
This is useful for filtering or processing signals.

h̃(k) = f̃(k)g̃(k)

Consider the inverse.

h(x) = 1
2π

∫ ∞

−∞
f̃(k)g̃(k)eikx dk

= 1
2π

∫ ∞

−∞

(∫ ∞

−∞
f(y)e−iky dy

)
g̃(k)eikx dk

=
∫ ∞

−∞
f(y)

( 1
2π

∫ ∞

−∞
e−iky g̃(k)eikx dk

)
dy

=
∫ ∞

−∞
f(y)

( 1
2π

∫ ∞

−∞
g̃(k)eik(x−y) dk

)
dy
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=
∫ ∞

−∞
f(y)g(x− y) dy by eq. (8.9)

≡ (f ∗ g)(x) (8.17)

where f ∗ g is called the convolution of f and g. By duality eq. (8.14), we also have

h(x) = f(x)g(x) ⇐⇒ h̃(k) = 1
2π

∫ ∞

−∞
f̃(p)g̃(k − p) dp = 1

2π

(
f̃ ∗ g̃

)
(k) (8.18)

§8.5 Parseval’s theorem

Consider h(x) = g⋆(−x).

h̃(k) =
∫ ∞

−∞
g⋆(−x)e−ikx dx

=
[∫ ∞

−∞
g(−x)eikx dx

]⋆
Let −x 7→ y

=
[∫ ∞

−∞
g(y)e−iky dy

]⋆
= g̃⋆(k)

Substituting this into the convolution theorem eq. (8.17), with g(x) 7→ g⋆(−x), we have
(RHS is the inverse Fourier transform)∫ ∞

−∞
f(y)g⋆(y − x) dy = 1

2π

∫ ∞

−∞
f̃(k)g̃⋆(k)eikx dx

Taking x = 0 in this expression and mapping y 7→ x, we find∫ ∞

−∞
f(x)g⋆(x) dx = 1

2π

∫ ∞

−∞
f̃(k)g̃⋆(k) dx (8.19)

Equivalently,

〈g, f〉 = 1
2π

〈
g̃, f̃

〉
(8.20)

So the inner product is conserved under the Fourier transform (up to a factor of 2π).
Now, by setting g⋆ = f⋆, we have∫ ∞

−∞
|f(x)|2 dx = 1

2π

∫ ∞

−∞

∣∣∣f̃(k)
∣∣∣2 dk

This is Parseval’s theorem.
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§8.6 Fourier transforms of generalised functions

We can apply Fourier transforms to generalised functions by considering limiting distri-
butions. Consider the inversion

f(x) = F−1(F(f))(x)

= 1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(u)e−iku du

]
eikx dk

=
∫ ∞

−∞
f(u)

[ 1
2π

∫ ∞

−∞
e−ik(x−u) dk

]
︸ ︷︷ ︸

δ(x−u)

du

In order to reconstruct f(x) on the right hand side for any function f , we must have that
the bracketed term is δ(x− u). So we identify

δ(x− u) = 1
2π

∫ ∞

−∞
eik(x−u) dk

• If f(x) = δ(x),

f̃(k) =
∫ ∞

−∞
δ(x)eikx dx = 1 (8.21)

This can be thought of as the Fourier transform of an infinitely thin Gaussian,
which becomes an infinitely wide Gaussian (a constant).

• If f(x) = 1, then

f̃(k) =
∫ ∞

−∞
e−ikx dx = 2πδ(k) (8.22)

This can also be found by the duality formula eq. (8.14).

• If f(x) = δ(x− a), using eq. (8.9) we have

f̃(k) = e−ika (8.23)

This is a translation of the original Fourier transform for the δ function above.

§8.7 Trigonometric functions

Let f(x) = cosωx = 1
2
(
eiωx + e−iωx). Then,

f̃(k) = π(δ(k + ω) + δ(k − ω)) (8.24)

For f(x) = sinωx, we have

f̃(k) = iπ(δ(k + ω) − δ(k − ω))

86



Using duality eq. (8.14),

f(x) = 1
2

(δ(x+ a) + δ(x− a)) =⇒ f̃(k) = cos ka

f(x) = 1
2i

(δ(x+ a) − δ(x− a)) =⇒ f̃(k) = sin ka

§8.8 Heaviside functions

LetH(x) be the Heaviside function, such thatH(0) = 1
2 . Then,H(x)+H(−x) = 1 for all

x and is cts at x = 0. We can take the Fourier transform of this and find by eq. (8.22)

H̃(k) + H̃(−k) = 2πδ(k) (∗)

Recall that H ′(x) = δ(x), eq. (6.7). Thus by eqs. (8.13) and (8.21),

ikH̃(x) = δ̃(k) = 1 (†)

Since kδ(k) = 0, the two equations for H̃ can be consistent if we take

H̃(k) = πδ(k) + 1
ik

(8.25)

§8.9 Dirichlet discontinuous formula

Recall the Dirichlet discontinuous formula eq. (8.16):

∫ ∞

0

sin ax
x

dx = π

2
sgn a =


π
2 a > 0
0 a = 0
−π

2 a < 0

We can rewrite this as

1
2

sgn x = 1
2π

∫ ∞

−∞

eikx

ik
dk

since the cosine term divided by ik is odd. Hence,

f(x) = 1
2

sgn x ⇐⇒ f̃(k) = 1
ik

(8.26)

This is the preferred form for a Heaviside-type function when used in Fourier trans-
forms.
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§8.10 Solving ODEs for boundary value problems

Consider y′′ − y = f(x) with homogeneous boundary conditions y → 0 as x → ±∞.
Taking the Fourier transform of this expression, we find by eq. (8.13)

(−k2 − 1)ỹ = f̃

Thus, the solution is

ỹ(k) = −f̃(k)
1 + k2 ≡ f̃(k)g̃(k)

where g̃(k) = −1
1+k2 . Note that g̃(k) is the Fourier transform of g(x) = −1

2e
−|x|, eq. (8.6).

Applying the convolution theorem eq. (8.17),

y(x) =
∫ ∞

−∞
f(u)g(x− u) du

= −1
2

∫ ∞

−∞
f(u)e−|x−u| du

= −1
2

[∫ x

−∞
f(u)eu−x du+

∫ ∞

x
f(u)ex−u du

]
This is in the form of a boundary value problemGreen’s function eq. (7.20). We can con-
struct the same results by constructing the Green’s function directly or by using inverse
fourier transform on ỹ(k).

§8.11 Signal processing

Suppose we have an input signal I(t), which is acted on by some linear operator Lin to
yield an output O(t). The Fourier transform of the input Ĩ(ω) is called the resolution.

Ĩ(ω) =
∫ ∞

−∞
I(t)e−iωt dt (8.27)

In the frequency domain, the action of Lin on I(t) means that Ĩ(ω) is multiplied by a
transfer function R̃(ω) to yield outupt,

O(t) = 1
2π

∫ ∞

−∞
R̃(ω)Ĩ(ω)eiωt dω (8.28)

The inverse Fourier transformof the transfer function, R, is called the response function,
which is given by

R(t) = 1
2π

∫ ∞

−∞
R̃(ω)eiωt dω (8.29)
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By the convolution theorem,

O(t) =
∫ ∞

−∞
I(u)R(t− u) du

Suppose there is no input (I(t) = 0) for t < 0. By causality, there should be zero output
for the response function (R(t) = 0) for t < 0. Therefore, we require 0 < u < t and
hence

O(t) =
∫ t

0
I(u)R(t− u) du (8.30)

which resembles an initial value problem Green’s function eq. (7.26).

§8.12 General transfer functions for ODEs

Suppose an input-output relationship is given by a linear ODE (nth order).

LO(t) ≡
(

n∑
i=0

ai
di

dxi

)
O(t) ≡ I(t) (8.31)

Here, Lin = 1. We want to solve this ODE using a Fourier transform.

(a0 + a1iω − a2ω
2 − a3iω

3 + · · · + an(iω)n)Õ(ω) = Ĩ(ω)

We can solve this algebraically in Fourier transform space. The transfer function is

R̃(ω) = 1
a0 + · · · + an(iω)n

(8.32)

We factorise the denominator to find partial fractions. Suppose there are J distinct roots
(iω − cj)kj , where kj is the algebraic multiplicity of the jth root, so∑J

j=1 kj = n. So we
can write

R̃(ω) = 1
(iω − c1)k1 . . . (iω − cJ)kJ

Expressing this as partial fractions,

R̃(ω) =
J∑
j=1

ki∑
m=1

Γjm
(iω − cj)m

(8.33)

The Γjm terms are constant. To solve this, we must find the inverse Fourier transform of
(iω − a)−m. Recall that eq. (8.6a)

F−1
( 1
iω − a

)
=
{
eat t > 0
0 t < 0
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for Re a < 0. So we will require Re cj < 0 for all j to eliminate exponentially growing
solutions. Note that form = 2,

i
d

dω

( 1
iω − a

)
= 1

(iω − a)2

and recall eq. (8.12)

F(tf(t)) = iF ′(ω)

Hence,

F−1
( 1

(iω − a)2

)
=
{
teat t > 0
0 t < 0

Inductively, we arrive at

F−1
( 1

(iω − a)m
)

=


tm−1

(m−1)!e
at t > 0

0 t < 0
(8.34)

We can therefore invert any transfer function to obtain the response function. Thus the
response function takes the form

R(t) =
J∑
j=1

ki∑
m=1

Γjm
tm−1

(m− 1)!
ecjt, t > 0 (8.35)

and zero for t < 0. We can now solve such differential equations, eq. (8.31), in Green’s
function form eq. (8.30), or directly invert R̃(ω)Ĩ(ω) for a polynomial Ĩ(ω).

§8.13 Damped oscillator

We can use the Fourier transform method to solve the differential equation

Ly ≡ y′′ + 2py′ + (p2 + q2)y = f(t)

where p > 0. Consider homogeneous boundary conditions y(0) = y′(0) = 0. The
Fourier transform is

(iω)2ỹ + 2ipωỹ + (p2 + q2)ỹ = f̃

Hence,

ỹ = f̃

−ω2 + 2ipω + p2 + q2 ≡ R̃f̃
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We can invert this using the convolution theorem by inverting R̃.

y(t) =
∫ t

0
R(t− τ)f(τ) dτ

where the response function is

R(t− τ) = 1
2π

∫ ∞

−∞

eiω(t−τ)

p2 + q2 + 2ipω − ω2 dω

We can show that LR(t− τ) = δ(t− τ) using eq. (8.23); in other words, R is the Green’s
function (Sheet 3, Q4).

§8.14 Discrete sampling and the Nyquist frequency

Suppose a signal h(t) is sampled at equal times tn = n∆ with a time step ∆ and values

hn = h(tn) = h(n∆), n ∈ Z (8.36)

The sampling frequency is therefore ∆−1, so the sampling angular velocity is ωs =
2πfs = 2π

∆ .

Definition 8.2 (Nyquist Frequency)
The Nyquist frequency is the highest frequency actually sampled at ∆,

fc = 1
2∆

(8.37)

Suppose we have a signal gf with a given frequency f . We will write

gf (t) = A cos(2πft+ φ) = Re
(
Ae2πift+φ

)
= 1

2

(
Ae2πift+φ

)
+ 1

2

(
Ae−2πift+φ

)
(8.38)

where A ∈ R. Note that this signal has two ‘frequencies’; a positive and a negative
frequency. The combination of these frequencies gives the full wave.

Suppose we sample gf (t) at the Nyquist frequency, so f = fc. Then,

gfc(tn) = A cos
(

2π 1
2∆

n∆ + φ

)
= A cos(πn+ φ)
= A cosπn cosφ+A sin πn sinφ
= A′ cos(2πfctn) (8.39)

where A′ = A cosφ. This has removed half of the information about the wave; the
amplitude and the phase have become degenerate. We have lost phase/amplitude in-
formation, there is no longer any distinction between them. We can identify fc with −fc
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when considering the remaining information; we say that the two frequencies are aliased
together.

Now, suppose we sample at greater than the Nyquist frequency, in particular f = fc +
δf > fc, where for simplicity we let δf < fc. As an exercise, show that

gf (tn) = A cos(2π(fc + δf)tn + φ)
= A cos(2π(fc − δf)tn − φ) (8.40)

So frequencies above the Nyquist frequency are reinterpreted after the sampling as a
frequency lower than the Nyquist frequency. This aliases fc + δf with fc − δf .

§8.15 Nyquist-Shannon sampling theorem

Definition 8.3 (Bandwith-Limited)
A signal g(t) is bandwidth-limited if it contains no frequencies above ωmax =
2πfmax. In other words, g̃(ω) = 0 for all |ω| > ωmax. In this case,

g(t) = 1
2π

∫ ∞

−∞
g̃(ω)eiωt dω = 1

2π

∫ ωmax

−ωmax
g̃(ω)eiωt dω (8.41)

Suppose we set the sampling rate to the Nyquist frequency, so ∆ = 1
2fmax

. Then,

gn ≡ g(tn) = 1
2π

∫ ωmax

−ωmax
g̃(ω)eiπnω/ωmax dω

This is a complex Fourier series coefficient eq. (1.13) cn, multiplied by ωmax
π . The Fourier

series is periodic in ω with period 2ωmax, not in space or time.

g̃per(ω) = π

ωmax

∞∑
n=−∞

gne
−iπnω/ωmax (8.42)

The actual Fourier transform g̃ is found by multiplying by a top hat window function

h̃(ω) =
{

1 |ω| ≤ ωmax

0 otherwise

Hence,

g̃(ω) = g̃per(ω)h̃(ω) (8.43)

Note that this relation is exact. Inverting this expression,

g(t) = 1
2π

∫ ∞

−∞
g̃per(ω)h̃(ω)eiωt dω
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= 1
2ωmax

∞∑
n=−∞

gn

∫ ωmax

−ωmax
exp

(
iω

(
t− nπ

ωmax

))
dω

Only the cosine term is even, hence

g(t) = 1
2ωmax

∞∑
n=−∞

gn
sin(ωmaxt− πn)
ωmaxt− πn

(8.44)

Hence, g(t) can be written exactly as a combination of countably many discrete sample
points.

§8.16 Discrete Fourier transform

Suppose we have a finite number of samples

hm = h(tm) for tm = m∆, wherem = 0, . . . , N − 1 (8.45)

We will approximate the Fourier transform for N frequencies within the Nyquist fre-
quency fc = 1

2∆ , using equally-spaced frequencies, given by ∆f = 1
N∆ in the range

−fc ≤ f ≤ fc. We could take the convention fn = n∆f = n
N∆ for n = −N

2 , . . . ,
N
2 . How-

ever, this overcounts the Nyquist frequency (which is aliased, eq. (8.39)), giving N + 1
frequencies instead of the desiredN . Since frequencies above theNyquist frequency are
aliased to below it, eq. (8.40):(

N

2
+m

)
∆f = fc + δf 7→

(
N

2
−m

)
∆f = −(fc − δf)

we can instead use the convention fn = n∆f = n
N∆ for

n = 0, . . . , N − 1 (8.46)

This counts the Nyquist frequency only once.

The discrete FT at a frequency fn becomes

h̃(fn) =
∫ ∞

−∞
h(t)e−2πifnt dt

≈ ∆
N−1∑
m=0

hme
−2πifntm

= ∆
N−1∑
m=0

hme
−2πimn/N

= ∆h̃d(fn) (8.47)

where the function h̃d(fn) is the discrete Fourier transform.
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The matrix

[DFT]mn = e−2πimn/N , m, n = 0, 1, . . . , N − 1 (8.48)

defines the discrete Fourier transform for the vector h = {hm}. The discrete Fourier
transform is then

h̃d = [DFT]h

By inverting the discrete Fourier transform matrix, we find

h = [DFT]−1h̃d = 1
N

[DFT]†h̃d

since the inverse of the discrete Fourier transform matrix is its adjoint. The matrix is
built from roots of unity ω = e−2πi/N . So, for instance, n = 4 gives ω = e−2πi/4 = −i
giving

[DFT] =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


The inverse discrete Fourier transform is

hm = h(tm)

= 1
2π

∫ ∞

−∞
h̃(ω)eiωtm dω

=
∫ ∞

−∞
h̃(f)e2πiftm df

≈ 1
∆N

N−1∑
n=0

∆h̃d(fn)e2πimn/N

= 1
N

N−1∑
n=0

h̃ne
2πimn/N

Hence, we can interpolate the initial function from its samples.

h(t) = 1
N

N−1∑
n=0

h̃ne
2πint/N

Parseval’s theorem becomes,

N−1∑
m=0

|hm|2 = 1
N

N−1∑
n=0

∣∣∣h̃n∣∣∣2 (8.49)
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Exercise 8.5. Prove this.

The convolution theorem for gm, hm is

ck =
N−1∑
m=0

gmhk−m ⇐⇒ c̃k = g̃kh̃k (8.50)

§8.17 Fast Fourier transform (non-examinable)

While the discrete Fourier transform is an orderO(N2) operation, we can reduce this into
an orderO(n logN) operation. Such a simplification is called the fast Fourier transform.
We can split the discrete Fourier transform into even and odd parts, noting that ωN =
e−2πi/N implies ω2

N = e−2πi/(N/2) = ωN/2

h̃k =
N−1∑
n=0

hnω
nk
N

=
N/2−1∑
m=0

h2mω
2mk
N +

N/2−1∑
m=0

h2m+1ω
(2m+1)k
N

=
N/2−1∑
m=0

h2m(ω2
N )mk + ωkN

N/2−1∑
m=0

h2m+1(ω2
N )mk

=
N/2−1∑
m=0

h2m(ωN/2)mk + ωkN

N/2−1∑
m=0

h2m+1(ωN/2)mk

This algorithm iteratively reduces the Fourier transform’s complexity by a factor of two,
until the trivial case of finding the discrete Fourier transform of two data points.
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Part IV
PDEs on Unbounded Domains
§9 Method of characteristics

§9.1 Well-posed Cauchy problems

Solving partial differential equations depends on the nature of the equations in combin-
ation with the boundary or initial data. A Cauchy problem is the partial differential
equation for some function φ together with the auxiliary data (in φ and its derivatives)
specified on a surface (or a curve in two dimensions), which is called Cauchy data. For
a Cauchy problem to be well-posed, we require that

1. a solution exists (we do not have excessive auxiliary data);

2. the solution is unique (we do not have insufficient auxiliary data); and

3. the solution depends continuously on the auxiliary data.

§9.2 Method of characteristics

Consider a parametrised curve C given by Cartesian coordinates (x(s), y(s)). The tan-
gent vector is

v =
(dx(s)

ds
,
dy(s)

ds

)
We then define the directional derivative of a function φ(x, y) by

dφ
ds

∣∣∣∣
C

= dx(s)
ds

∂φ

∂x
+ dy(s)

ds
∂φ

∂y
= v · ∇φ

∣∣∣∣
C

(9.1)

Suppose v · ∇φ = 0 then dφ
ds = 0 and hence φ is constant along the curve.

Suppose there exists a vector field

u = (α(x, y), β(x, y)) (9.2)

with a family of non-intersecting integral curves C which fill the plane (or domain of
the function more generally), such that at a point (x, y) the integral curve has tangent
vector u(x, y).
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Now, define a curveB by (x(t), y(t)) such thatB is transverse to u; its tangent is nowhere
parallel to u.

w =
(dx(t)

dt
,
dy(t)

dt

)
∦ (α(x, y), β(x, y)) = u

This can be used to parametrise the family of curves by labelling each curve C with the
value of t at the intersection point between it andB. Along the curve, we use s such that
s = 0 at the intersection. The integral curves (x(s, t), y(s, t)) satisfy

dx
ds

= α(x, y); dy
ds

= β(x, y) (9.3)

We can solve these equations to find a family of characteristic curves, along which t re-
mains constant. This yields a new coordinate system (s, t) associated with a differential
equation we wish to solve.

§9.3 Characteristics of a first order PDE

Consider

α(x, y)∂φ
∂x

+ β(x, y)∂φ
∂y

= 0 (9.4)

with Cauchy data on an initial curve B, defined by (x(t), y(t)):

φ(x(t), y(t)) = f(t) (9.5)

Note,

αφx + βφy = u · ∇φ = dφ
ds

∣∣∣∣
C

This is exactly the directional derivative along the integral curveC, definedbyu = (α, β),
which are called the characteristic curves of the PDE. Since dφ

ds = αφx + βφy = 0 from
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the original PDE eq. (9.4), the function φ(x, y) is constant along this curve C. In other
words, the Cauchy data f(t) defined on B at s = 0 is propagated constantly along the
integral curves. This gives the solution

φ(s, t) = φ(x(s, t), y(s, t)) = f(t) (9.6)

To obtain φ in the original coordinates, we need to transform from s, t-space into x, y-
space. Provided that the Jacobian J = xtys − xsyt is nonzero, we can invert the trans-
formation and find s, t as functions of x, y. This gives

φ(x, y) = f(t(x, y)) (9.7)

To solve such a PDE i.e. eq. (9.4) given eq. (9.5), we will typically use the following
steps.

1. Find the characteristic equations eq. (9.3), dx
ds = α, dy

ds = β.

2. Parametrise the initial conditions on

B(x(t), y(t)) (9.8)

3. Solve the characteristic equations to find x = x(s, t) and y = y(s, t) subject to the
initial conditions, eq. (9.8), at s = 0.

4. Solve the equation for φ, eq. (9.4) with eq. (9.1), given by dφ
ds = αφx + βφy = 0, so

φ is constant along the integral curves, giving φ(s, t) = f(t), eq. (9.6).

5. Invert the relations s = s(x, y) and t = t(x, y), then find φ in terms of x, y.

Example 9.1
Consider the equation

dφ(x, y)
dx

= 0

such that

φ(0, y) = h(y)

1. The characteristic equations are given by

dx
ds

= α = 1; dy
ds

= β = 0 (∗)

2. The initial curve B is given by

(x(t), y(t)) = (0, t) (†)
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3. Solving the characteristic equations (∗),

x = s+ c(t); y = d(t)

At x = 0, we must have s = 0, so c = 0. Further, y = t hence d = t. Thus,

x = s; y = t

4. Thus,

dφ
dx

= 0 =⇒ φ(s, t) = h(t) =⇒ φ(x, y) = h(y)

Example 9.2
Consider

exφx + φy = 0; φ(x, 0) = cosh x

1. The characteristic equations are

dx
ds

= ex; dy
ds

= 1 (∗)

2. The initial conditions are

x(t) = t; y(t) = 0 (†)

We solve the characteristic equation subject to these initial conditions, giving

−e−x = s+ c(t); y = s+ d(t)

s = 0 (x = t) implies −e−t = c(t) and y = 0 = d(t). Hence

e−x = e−t − s; y = s

3. Now,

dφ
ds

= 0 =⇒ φ(s, t) = cosh t

4. Since s = y, e−t = y + e−x, we have t = − log(y + e−x). Thus,

φ(x, y) = cosh
[
− log

(
y + e−x)]
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§9.4 Inhomogeneous first order PDEs

Suppose we now wish to solve

α(x, y)φx + β(x, y)φy = γ(x, y) (9.9)

with Cauchy data φ(x(t), y(t)) = f(t) along a curve B. The characteristic curves are the
same as the homogeneous case eq. (9.4). However, the directional derivative no longer
vanishes:

dφ
ds

∣∣∣∣
C

= u · ∇φ = γ(x, y) (9.10)

where φ = f(t) at s = 0 on B. So f(t) is no longer propagated constantly across charac-
teristic polynomials, but is instead propagated according to the ODE in s eq. (9.10). We
must therefore solve this ODE along C before reverting to x, y coordinates.

Example 9.3
Consider

φx + 2φy = yex; φ(x, x) = sin x

1. The characteristic equation is given by

dx
ds

= 1; dy
ds

= 2 (∗)

2. The initial conditions are

x(t) = y(t) = t (†)

3. From the characteristic equations,

x = s+ c(t); y = 2s+ d(t)

Thus when s = 0 (†) implies,

x = t = c(t); y = t = d(t)

So the solutions to the characteristics are

x = s+ t; y = 2s+ t
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4. Now we solve
dφ
ds

= γ = yex = (2s+ t)es+t

Note that d
ds(2se

s) = 2es + 2ses, so the solution is

φ(s, t) = (2s− 2 + t)es+t + c(s)

for some constant term c(s). But φ(0, t) = sin t, hence

sin t = (t− 2)et + c(s) =⇒ φ(s, t) = (2s− 2 + t)es+t + sin t+ (2 − t)et

5. Inverting into x, y space, since s = y − x, t = 2x− y,

φ(x, y) = (y − 2)ex + (y − 2x+ 2)e2x−y + sin(2x− y)

§9.5 Classification of second order PDEs

In two dimensions, the general second order PDE is

Lφ ≡ a(x, y)∂
2φ

∂x2 + 2b(x, y) ∂
2φ

∂x∂y
+ c(x, y)∂

2φ

∂y2

+ d(x, y)∂φ
∂x

+ e(x, y)∂φ
∂y

+ f(x, y)φ(x, y)
(9.11)

The principal part is given by

σP (x, y, kx, ky) ≡ kTAk =
(
kx ky

)(a(x, y) b(x, y)
b(x, y) c(x, y)

)(
kx
ky

)

The PDE is classified by the properties of the eigenvalues of A.

1. If b2 − ac < 0, the equation is elliptic. The eigenvalues have the same sign. An
example is the Laplace equation, eq. (5.1).

2. If b2 − ac > 0, the equation is hyperbolic. The eigenvalues have opposite signs. An
example is the wave equation, eq. (3.4).

3. If b2 − ac = 0, the equation is parabolic, where at least one eigenvalue is zero. An
example is the heat equation, eq. (4.3).

Note that a differential equation may have different classifications at different points
(x, y) in space.
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§9.6 Characteristic curves of second order PDEs

A curve defined by f(x, y) = constant is a characteristic if

(
fx fy

)(a b
b c

)(
fx
fy

)
= 0 (9.12)

This is a generalisation of the first order case u · ∇f = 0 where u = (α, β). The curve
can be written as y = y(x) by the chain rule.

∂f

∂x
+ ∂f

∂y

dy
dx

= 0 =⇒ fx
fy

= −dy
dx

(9.13)

Substituting into the quadratic form eq. (9.12),

a

(dy
dx

)2
− 2bdy

dx
+ c = 0

for which we have a quadratic solution given by

dy
dx

= b±
√
b2 − ac

a
(9.14)

1. Hyperbolic equations have two such solutions, since b2 − ac > 0.

2. Parabolic equations have one solution.

3. Elliptic equations have no real characteristics.

§9.7 Characteristic coordinates

Transforming to characteristic coordinates u, v will set a = 0 and c = 0 in eq. (9.11).
Hence, the PDE will take the canonical form

∂2φ

∂u∂v
+ · · · + = 0 (9.15)

where the omitted terms are lower order, e.g. φu, φv, φ . . .

Example 9.4
Consider

−yφxx + φyy = 0 (∗)

Here, a = −y, b = 0, c = 1 hence b2 − ac = y. For y > 0, the equation is hyperbolic,
for y < 0 it is elliptic, and for y = 0 it is parabolic. Consider the characteristics for

102



y > 0.

dy
dx

= b±
√
b2 − ac

a
= ± 1

√
y

Hence, ∫ √
y dy = ±

∫
dx =⇒ 2

3
y

3
2 ± x = C±

Therefore, the characteristic curves are

u = 2
3
y

3
2 + x; v = 2

3
y

3
2 − x

Taking derivatives,

ux = 1; uy = √
y; vx = −1; vy = √

y

Hence,

φx = φuux + φvvx = φu − φv

φy = √
y(φu + φv)

φxx = φuu − 2φuv + φvv

φyy = y(φuu + 2φuv + φvv) + 1
2√

y
(φu + φv)

Substituting into the original PDE (∗),

−yφxx + φyy = y

(
4φuv + 1

2y
3
2

(φu + φv)
)

Note, u+ v = 4
3y

3
2 , hence we have the canonical form

4φuv + 1
6(u+ v)

(φu + φv) = 0

§9.8 General solution to wave equation

The wave equation, eq. (3.4), is

1
c2
∂2φ

∂t2
− ∂2φ

∂x2 = 0

We wish to solve this with initial conditions

φ(x, 0) = f(x), φt(x, 0) = g(x) (9.16)
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Here, a = 1
c2 , b = 0, c = −1 hence b2 − ac > 0. The characteristic equation is

dx
dt

=
0 ±

√
0 + 1

c2

1
c2

= ±c

Hence the characteristic coordinates are

u = x− ct; v = x+ ct

This yields the canonical form

∂2φ

∂u∂v
= 0 (9.17)

This may be integrated directly to find

∂φ

∂v
= F (v) =⇒ φ = G(u) +

∫ v

F (y) dy = G(u) +H(v)

Imposing the initial conditions at t = 0, we find u = v = x and

G(x) +H(x) = f(x); −cG′(x) + cH ′(x) = g(x)

Differentiating the first equation, we find

G′(x) +H ′(x) = f ′(x)

We can combine this with the second equation to give

H ′(x) = 1
2

(
f ′(x) + 1

c
g(x)

)
=⇒ H(x) = 1

2
(f(x) − f(0)) + 1

2c

∫ x

0
g(y) dy

Similarly,

G′(x) = 1
2

(
f ′(x) − 1

c
g(x)

)
=⇒ G(x) = 1

2
(f(x) − f(0)) − 1

2c

∫ x

0
g(y) dy

The final solution is therefore

φ(x, t) = G(x− ct) +H(x+ ct) = 1
2

(f(x− ct) + f(x+ ct)) + 1
2c

∫ x+ct

x−ct
g(y) dy (9.18)

Domain of dependence
Waves propagate at a velocity c, hence φ(x, t) is fully determined by values of f, g in the
interval [x− ct, x+ ct]. This is the same idea as light cones in special relativity.
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§10 Solving partial differential equations with Green’s functions

§10.1 Diffusion equation and Fourier transform

Recall the heat equation, eq. (4.3), for a conducting wire given by

∂Θ
∂t

(x, t) −D
∂2Θ
∂x2 (x, t) = 0 (10.1)

with initial conditions Θ(x, 0) = h(x) and boundary conditions Θ → 0 as x → ±∞.
Taking the Fourier transform with respect to x using eq. (8.13),

∂

∂t
Θ̃(k, t) = −Dk2Θ̃(k, t)

Integrating, we find

Θ̃(k, t) = Ce−Dk2t

The initial conditions give Θ̃(k, 0) = h̃(k) and therefore

Θ̃(k, t) = h̃(k)e−Dk2t

We take the inverse Fourier transform to find

Θ(x, t) = 1
2π

∫ ∞

−∞
h̃(k) e−Dk2t︸ ︷︷ ︸

FT of Gaussian
eikx dk

Hence, by the convolution theorem eq. (8.17),

Θ(x, t) = 1√
4πDt

∫ ∞

−∞
h(u) exp

(
−(x− u)2

4Dt

)
du

≡
∫ ∞

−∞
h(u)Sd(x− u, t) du (10.2)

where the fundamental solution is

Sd(x, t) = 1√
4πDt

exp
(

− x2

4Dt

)
(10.3)

which is the Fourier transform of exp
(
−Dk2t

)
(you should knowhow to derive eq. (10.3)

using derivatives or by completing the square). This is also known as the diffusion
kernel or the source function.

Note. With localised initial conditions Θ(x, 0) = Θ0δ(x), the solution is exactly the fun-
damental solution:

Θ(x, t) = Θ0Sd(x, t) = Θ0√
4πDt

exp
(
−η2

)
; η = x

2
√
Dt

(10.4)

where η is the similarity parameter. I.e. for t ≥ 0 spreads smoothly as a Gaussian.
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§10.2 Gaussian pulse for heat equation

Suppose that the initial conditions for the heat equation are given by

f(x) =
√
a

π
Θ0e

−ax2

Then, our eq. (10.2) gives

Θ(x, t) = Θ0
√
a√

4π2Dt

∫ ∞

−∞
exp

[
−au2 − (x− u)2

4Dt

]
du

= Θ0
√
a√

4π2Dt

∫ ∞

−∞
exp

[
−(1 + 4aDt)u2 − 2xu+ x2

4Dt

]
du

= Θ0
√
a√

4π2Dt

∫ ∞

−∞
exp

[
−1 + 4aDt

4Dt

(
u− x

1 + 4aDt

)]
exp

[
−ax2

1 + 4aDt

]
du

Recall eq. (6.3),
∫ ∞

−∞
exp

[
−(u− µ)2

σ2

]
du = σ

√
π

The integral above is a Gaussian, so its solution can be read off directly as

Θ(x, t) = Θ0
√
a√

π(1 + 4π2Dt)
exp

[
−ax2

1 + 4aDt

]
(10.5)

So the width of the Gaussian pulse will get wider over time, according to σ2 ∼ t, as it
evolves according to the heat equation. The area is constant, so heat energy is conserved
in the system.

§10.3 Forced diffusion equation

Consider the equation

∂

∂t
Θ(x, t) −D

∂2Θ
∂x2 = f(x, t) (10.6)

subject to homogeneous initial conditions Θ(x, 0) = 0. We construct a two-dimensional
Green’s function G(x, t; ξ, τ) such that

∂

∂t
G(x, t) −D

∂2G

∂x2 = δ(x− ξ)δ(t− τ) (10.7)
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subject to the same homogeneous boundary conditions G(x, 0; ξ, τ) = 0. Consider the
Fourier transform with respect to x.

∂G̃

∂t
+Dk2G̃ = e−ikξδ(t− τ)

We can solve this using an integrating factor eDk2t and integrating with respect to time.
Since G = 0 at t = 0,

∂

∂t

[
eDk

2tG̃
]

= e−ikξ+Dk2tδ(t− τ)∫ t

0

∂

∂t′

[
eDk

2t′G̃
]

dt′ =
∫ t

0
e−ikξ+Dk2t′δ(t′ − τ) dt′

eDk
2tG̃ = e−ikξ

∫ t

0
eDk

2t′δ(t′ − τ) dt′

eDk
2tG̃ = e−ikξeDk

2τH(t− τ)

where H is the Heaviside step function. Thus,

G̃(k, t; ξ, τ) = e−ikξe−Dk2(t−τ)H(t− τ)

The inverse Fourier transform gives the Green’s function.

G(x, t; ξ, τ) = H(t− τ)
2π

∫ ∞

−∞
e−ikξe−Dk2(t−τ)eikx dk

This is a Gaussian; by changing variables into x′ = x− ξ and t′ = t− τ we find

G(x, t; ξ, τ) = H(t′)
2π

∫ ∞

−∞
eikx

′
e−Dk2t′ dk = H(t′)√

4πDt′
exp

[
−(x′)2

4Dt′

]

Converting back,

G(x, t; ξ, τ) = H(t− τ)√
4πD(t− τ)

exp
[
− (x− ξ)2

4D(t− τ)

]
= H(t− τ)Sd(x− ξ, t− τ) (10.8)

where Sd is the fundamental solution in eq. (10.3).

Thus, the general solution is

Θ(x, t) =
∫ ∞

0
dτ
∫ ∞

−∞
dξ G(x, t; ξ, τ)f(ξ, τ)

Let ξ = u, then

Θ(x, t) =
∫ t

0
dτ
∫ ∞

−∞
du f(u, τ)Sd(x− u, t− τ) (10.9)
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§10.4 Duhamel’s principle

In the above equation, omitting the integral over time, this is exactly the solution as
found earlier with initial conditions at t = τ , which was

Θ(x, t) =
∫ ∞

−∞
du f(u)Sd(x− u, t− τ)

The forced PDE with homogeneous boundary conditions can be related to solutions of
the homogeneous PDE with inhomogeneous boundary conditions. The forcing term
f(x, t) at t = τ acts as an initial condition for subsequent evolution. Thus, the solution,
eq. (10.9), is a superposition of the effects of the initial conditions integrated over 0 <
τ < t. This relation between the homogeneous and inhomogeneous problems is known
as Duhamel’s principle.

§10.5 Forced wave equation

Consider the forced wave equation, given by

∂2φ

∂t2
− c2∂

2φ

∂x2 = f(x, t) (10.10)

with φ(x, 0) = φt(x, 0) = 0. We construct the Green’s function using

∂2G

∂t2
− c2∂

2G

∂x2 = δ(x− ξ)δ(t− τ)

withG(x, 0) = Gt(x, 0) = 0. We take the Fourier transformwith respect to x, and find

∂2G̃

∂t2
+ c2k2G̃ = e−ikξδ(t− τ)

We can solve this by inspection by comparing with the corresponding initial value
problem Green’s function eq. (7.26) which has homogeneous solution sin kc(t − τ) as
G(x, 0) = 0, and find

G̃ =
{

0 t < τ

e−ikξ sin kc(t−τ)
kc t > τ

Using the Heaviside function.

G̃ = e−ikξ sin kc(t− τ)
kc

H(t− τ)

We invert the Fourier transform.

G(x, t; ξ, τ) = H(t− τ)
2πc

∫ ∞

−∞
eik(x−ξ) sin kc(t− τ)

k
dk
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LetA = x− ξ, andB = c(t− τ). By oddness of sine, only the cosine term of the complex
exponential remains. Noting the similarity to the Dirichlet discontinuous function,

G(x, t; ξ, τ) = H(t− τ)
πc

∫ ∞

0

cos(kA) sin(kB)
k

dk

= H(t− τ)
2πc

∫ ∞

0

sin k(A+B) − sin k(A−B)
k

dk

= H(t− τ)
4c

[sgn(A+B) − sgn(A−B)]

by eq. (8.16). Since the H(t − τ) term is nonzero only for t > τ , we must have B =
c(t− τ) > 0. The only way that the bracketed term can be nonzero is when |A| < B; so
|x− ξ| < c(t− τ). This is the domain of dependence as found before, demonstrating the
causality of the relation. Hence,

G(x, t; ξ, τ) = 1
2c
H(c(t− τ) − |x− ξ|) (10.11)

Thus, the solution is

φ(x, t) =
∫ ∞

0
dτ
∫ ∞

−∞
dξ f(ξ, t)G(x, t; ξ, τ)

= 1
2c

∫ t

0
dτ
∫ x+c(t−τ)

x−c(t−τ)
dξ f(ξ, τ) (10.12)

Exercise 10.1. Relate eq. (10.12) toD’Alembert’s solutionwith ICs eq. (9.18) at t = 0, φ =
0, φt = g(x) as an example of Duhamel’s principle.

§10.6 Poisson’s equation

Consider

∇2φ = −ρ(r) (10.13)
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defined on a three-dimensional domain D, with Dirichlet boundary conditions φ = 0
on a boundary ∂D.

§10.6.1 Fundamental solutions

The Dirac δ function, when defined in R3, has the following properties.

1. δ(r − r′) = 0 for all r 6= r′;

2. {∫
D δ(r − r′) d3r = 1 r′ ∈ D

0 otherwise
(10.14)

3.
∫
D f(r)δ(r − r′) d3r = f(r′).

First, we consider D = R3 with the homogeneous boundary conditions that G → 0 as
‖r‖ → ∞. This is known as the free-space Green’s function, denoted GFS,

∇2GFS(r, r′) = δ(r − r′) (10.15)

The potential here is spherically symmetric, so the Green’s function is a function only of
the distance between the point and the source, i.e. G(r, r′) = G(‖r − r′‖). Without loss
of generality, let r′ = 0, soG is a function only of the radius, now denoted r. Integrating
the left hand side of Poisson’s equation, eq. (10.15), over a ball B with radius r around
zero, we find ∫

B
∇2GFS d3r =

∫
∂B

∇GFS · n̂ dS =
∫
∂B

∂GFS
∂r

r2 dΩ

where dΩ is the angle element. This gives∫
B

∇2GFS d3r = 4πr2∂GFS
∂r

The right hand side of Poisson’s equation gives unity by eq. (10.14), since zero is con-
tained in the ball. Therefore,

∂GFS
∂r

= 1
4πr2 =⇒ GFS = −1

4πr
+ c

Since G → 0 as r → ∞, we must have c = 0. The fundamental solution is therefore the
free-space Green’s function given by

G(r; r′) = −1
4π‖r − r′‖

(10.16)

Thus, Poisson’s equation is solved by

Φ(r) = 1
4π

∫
R3

ρ(r′)
‖r − r′‖

d3r′
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§10.7 Green’s identities

Consider scalar functions φ,ψ which are twice differentiable on a domain D. By the
divergence theorem, Green’s first identity is∫

D
∇ · (φ∇ψ) d3r =

∫
D

(
φ∇2ψ + ∇φ · ∇ψ

)
d3r =

∫
∂D

φ∇ψ · n̂ dS (10.17)

Switching ψ and φ and subtracting from the above, we arrive at Green’s second identity,
where ∂ψ

∂n̂ = ∇ψ · n̂:∫
∂D

(
φ
∂ψ

∂n̂
− ψ

∂φ

∂n̂

)
dS =

∫
D

(
φ∇2ψ − ψ∇2φ

)
d3r (10.18)

Suppose we remove a ball Bε(r′) from the domain. Without loss of generality let r′ = 0.
Letφ be a solution to Poisson’s equation, so∇2φ = −ρ and letψ be the free-spaceGreen’s
function. Thus, the right hand side of the second identity becomes

∫
D\Bε

φ∇2GFS
0

−GFS∇2φ

 d3r =
∫
D\Bε

GFSρ d3r

The left hand side is∫
∂D

(
φ
∂GFS
∂n̂

−GFS
∂φ

∂n̂

)
dS +

∫
∂Bε

(
φ
∂GFS
∂n̂

−GFS
∂φ

∂n̂

)
dS

For the second integral, we take the limit as ε → 0. Let φ be regular, and let φ be the
average value and ∂φ

∂n̂ be the average derivative. This integral then becomes(
φ

−1
4πε2 − 1

4πε
∂φ

∂n̂

)
4πε2 → −φ(0)

For general r′ we instead get −φ(r′).

Combining the above, we find Green’s third identity, which is

φ(r′) =
∫
D
GFS(r; r′)(−ρ(r)) d3r +

∫
∂D

(
φ(r)∂GFS

∂n̂

(
r; r′)−GFS(r; r′)∂φ

∂n̂
(r)
)

dS

(10.19)

The second integral provides the ability to use inhomogeneous boundary conditions

§10.8 Dirichlet Green’s function

We will solve Poisson’s equation ∇2φ = −ρ on D with inhomogeneous boundary con-
ditions φ(r) = h(r) on ∂D. The Dirichlet Green’s function satisfies
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1. ∇2G(r; r′) = 0 for all r 6= r′;

2. G(r; r′) = 0 on ∂D;

3. G(r; r′) = GFS(r; r′)+H(r; r′) whereH satisfies Laplace’s equation, the homogen-
eous version of Poisson’s equation, for all r ∈ D.

Green’s second identity, eq. (10.18), with ∇2φ = −ρ,∇2H = 0 gives∫
∂D

(
φ
∂H

∂n̂
−H

∂φ

∂n̂

)
dS =

∫
D
Hρ d3r (†)

Now, we set GFS = G−H into Green’s third identity, eq. (10.19), to find

φ(r′) =
∫
D

(G−H)(−ρ) d3r +
∫
∂D

(
φ
∂(G−H)

∂n̂
− (G−H)∂φ

∂n̂

)
dS

All of the H terms can be cancelled by substituting in (†). Now, given G = 0, φ = h on
∂D, we have

φ(r′) =
∫
D
G(r; r′)(−ρ(r)) d3r +

∫
∂D

h(r)∂G(r; r′)
∂n̂

dS (10.20)

This is the general solution. The first integral is the Green’s function solution, and the
second integral yields the inhomogeneous boundary conditions.

Exercise 10.2. Use eq. (10.18) to show that the Green’s function is symmetric (3rd iden-
tity)

G(r, r′) = G(r′, r), ∀ r 6= r′.

§10.9 Neumann Green’s Function

For Neumann B.Cs, specifying ∂φ
∂n = k(r) on ∂D we have

φ(r′) =
∫
D
G(r; r′)(−ρ(r)) d3r +

∫
∂D

G(r; r′)(−k(r)) dS (10.21)

§10.10 Method of images for Laplace’s equation

For symmetric domainsD, we can construct Green’s functionswithG = 0 on ∂D by can-
celling the boundary potential out by using an opposite ‘mirror image’ Green’s function
placed outside the domain.

112



§10.10.1 Laplace’s equation on half-space

Consider Laplace’s equation ∇2φ = 0 on half of R3, in particular, the subset of R3 such
that z > 0. Let φ(x, y, 0) = h(x, y) and φ → 0 as ‖r‖ → ∞. The free space Green’s
function satisfies GFS → 0 as ‖r‖ → ∞, but does not satisfy the boundary condition
that GFS = 0 at z = 0. For GFS at r′ = (x′, y′, z′), we will subtract a copy of GFS located
at r′′ = (x′, y′,−z′). This gives

G(r, r′) = −1
4π|r − r′|

− −1
4π|r − r′′|

= −1
4π
√

(x− x′)2 + (y − y′)2 + (z − z′)2 + 1
4π
√

(x− x′)2 + (y − y′)2 + (z + z′)2

HenceG((x, y, 0), r′) = 0, so this function satisfies the Dirichlet boundary conditions on
all of the boundary ∂D. We have

∂G

∂n̂

∣∣∣∣
z=0

= ∂G

∂z

∣∣∣∣
z=0

= −1
4π

(
z − z′

|r − r′|3
− z + z′

|r − r′|3

)
(10.22)

= z′

2π

(
(x− x′)2 + (y − y′)2 + (z′)2

)−3/2

The solution is then given by eq. (10.20) (no sources),

Φ(x′, y′, z′) = z′

2π

∫ ∞

−∞

∫ ∞

−∞

[
(x− x′)2 + (y − y′)2 + (z′)2

]−3/2
h(x, y) dx dy (10.23)

§10.11 Method of images for wave equation

Consider the one-dimensional wave equation

φ̈− c2φ′′ = f(x, t)

with Dirichlet boundary conditions φ(0, t) = 0. We want to solve for x > 0.

We create matching Green’s functions from eq. (10.11) with opposite sign centred at
−ξ.

G(x, t; ξ, τ) = 1
2c
H(c(t− τ) − |x− ξ|) − 1

2c
H(c, (t− τ) − |x+ ξ|)

We can replace the addition of the two termswith a subtraction to instead use Neumann
boundary conditions.

Suppose we wish to solve the homogeneous problem with f = 0 for initial conditions
of a Gaussian pulse. Here, for x > 0 we have

φ(x, t) = exp
[
−(x− ξ + ct)2

]
− exp

[
−(−x− ξ + ct)2

]
(10.24)

The solution travels to the left, cancelling with the image at t = ξ
c , which emerges and

travels right as the reflected wave.
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