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Part |
Self-Adjoint ODEs

§1 Fourier Series

§1.1 Periodic Functions

Definition 1.1 (Periodic function)
A function f(x) is periodic if f(z + T') = f(x) for all z, where T is the period.

For example, simple harmonic motion is periodic. In space, we consider the wavelength
2

A= 2%, and the (angular) wave number k is defined conversely by k = <.

Consider the set of functions
nmwr nmwr

gn(x) = cos < hp(x) = sin A

where n € N. These functions are periodic on the interval 0 < = < 2L with period
T = 2L. Recall that

cos Acos B = %(COS(A — B) + cos(A + B));
sin Asin B = %(COS(A — B) —cos(A+ B));

sin A cos B — %(sin(A _ B) +sin(A + B))

Definition 1.2 (Inner product)

We define the inner product for two periodic functions f, g on the interval 0 < z <
2L.

2L
(fi9) = : f(z)g(x)dz"

"We will generalise this definition later when we use other eigen functions.
The functions g,, and h,, are mutually orthogonal on the interval [0, 2L) with respect to the
inner product above.

nwTr . MnT

2L
(hn,hm>:/0 sinTsm T dz




2L _
_ 1/ (cos (n —m)rz cos (n+ m)mv) e
0

2 L L

1L { 1 . (n—m)rz 1 . (n+ m)ﬂx]%
=—-— sin — sin

27 n—m L n+m L 0

= 0whenn #m

If n = m, we have

2L 1 2L 2
<hn,hn>=/ sin? x:f/ <l—cos Wj_fw) dv =L (n#0)
0 0

L 2
Thus,
Lépm n, 0
i ) = rm 7
0 nm =20
Similarly, we can show
Lépy, n,m#0
(gns gm) = {0 exactly one of m, n is zero

2L n,m=>_0
and

(hnygm) =0

(1.1)

(1.2)

(1.3)

Now, we assert that {g,, h,} form a complete orthogonal set; they span the space of
all ‘well-behaved’ periodic functions of period 2L. Further, the set {gy, h,} is linearly

independent.

§1.2 Definition of Fourier series

Since gy, hy, span the space of ‘well-behaved” periodic functions of period 2L, we can

express any such function as a sum of such eigenfunctions.

Definition 1.3 (Fourier series)
The Fourier series (FS) of f is
1

oo oo

nmx . nTT

f(:):):§a0+ E ancosT+ E bnsmT
n=1 n=1

(1.4)

where a,,, by, are constants such that the right hand side is convergent for all x where



f is continuous.”

“Note does not require differentiability unlike a Taylor series.

At a discontinuity x, the Fourier series approaches the midpoint of the supremum and
infimum of the function in a close neighbourhood of z. That is, we replace the left hand
side with

@) + 55

Let m > 0, and consider taking the inner product (h,,, f) and substituting the Fourier
series of f.

2L
(b £) = [ sin "2 (@) da

2L max (1 e nrr < . nmx o
= /0 sin — <2a0 + 7; (n €08 —— + > bnsin L) dz by substituting eq. (1.4)

= (hum, bmhsm) by orthogonality relations eqs. (1.1) to (1.3)

= Lb,,
Thus,
1 1 2L nmx
o= 7 (s f) = Z/ sin 7 f(2) da
1.5)
2L g (

an, (gn, f =7 / cos —— f x)dx

Note. e Note this includes the a( case so %ao is the average of the function.

e Note further that we may integrate over any range as long as the total length is one
period, 2L. Notably, we may integrate over the interval [—L, L].

e Think of FS as a decomposition into harmonics. Simplest FS are sine and cosine
function, e.g. pure mode sin 3%, hasbs =1,b, =0V n # 3.

Example 1.1 (Sawtooth wave)

Consider the sawtooth wave; defined by f(z) = x for z € [—L, L) and periodic else-
where.



_Q(:r-)

-

L =

L .
Here, a,, = % JZp zcos " dx = 0 as x odd and cos is even.

1 L
bn:Z[Lxsin?dx

2 L nnx ) , L
=1 BED == dz as the function we are integrating is even
0

—2 { nmc] g nwx
= — |xrcos — — cos — dz
nmw L 1o nmJo L
—2L 2L .
= COS N + 5 sinm
nm (nm)
2L
[ —— _1 n+1
m( )
So the sawtooth FS is
2L & (1) | nmx
flx) = 771:1 - sin 7
_ 2L Tx 1 . 2« n 1
= sin 7 5 sin 7 3

which is slowly convergent.

,{1(—:;—\ D

(1.6)



Note. Asn — oo
1. FS approx improves (convergent when cts)
2. FS — 0 at z = L i.e. midpoint of discontinuity

3. FS has a persistent overshoot at z = L (approx 9% knows as Gibbs phenomenon,
see Sheet 1, Q5).

§1.3 Dirichlet conditions

The Dirichlet conditions are sufficiency conditions for a “well-behaved” function, that
will imply the existence of a unique Fourier series.

Theorem 1.1

If f(x)is a bounded periodic function of period 2L with a finite number of minima,
maxima and discontinuities in [0, 2L), then the Fourier series converges to f at all
points at which f is continuous, and at discontinuities the series converges to the
midpoint.

Note.

1. These are some relatively weak conditions for convergence, compared to Taylor
series. However, this definition still eliminates pathological functions such as 1,
sin 1, 1(Q) and so on.

2. The converse is not true; for example, sin i does in fact have a Fourier series.

3. The proof is difficult and will not be given.

The rate of convergence of the Fourier series depends on the smoothness of the func-
tion.

Theorem 1.2

If f(z) has continuous derivatives” up to a pth derivative which is discontinuous,
then the Fourier series converges with order O(n~"*Y) as n — co.

“Note it needs to be continuous on R not on [0,2L), i.e. it needs to be continuous on [0,2L) and
F™(0) = f™(2L) as it’s periodic.

Example 1.2 (p = 0)



Consider the square wave (Sheet 1, Q5)

f(x):{1 0<z<l1

-1 —-1<z<0

J1 _@(x\

_l: 0 [ " 2 : 3 ' X
I [ ! r !
~
Then the Fourier series is
<= sin(2m — L)mx
Example 1.3 (p =1)
Consider the general ‘see-saw” wave, defined by
z(l — 0<z<
foy - [r0-9 0<z<e
El—-z) £€<z<1
and defined as an odd function for —1 < z < 0. The Fourier series is”
. sinnwé sinnrx

g1

N
N IRV

10



For instance, if £ = %, we can show that

(e 9]

ym sin(2m — 1)z
=2 2 U G Ty

"This is an important exercise you should do at home.

Example 1.4 (p = 2)
Let

1
fl@) = 52(1 - 2)
for 0 < z < 1, and defined as an odd function for —1 < x < 0. We can show that

sin(2m — 1)z
=4 Z @m =T Sk

Example 1.5 (p = 3)

Consider”

with Fourier series

“Sheet 1, Q1

11



§1.4 Integration of FS

It is always valid to take the integral of a Fourier series term by term. Defining F'(z) =
JZ, f(x)dx, we can show that F satisfies the Dirichlet conditions if f does. For instance,
a jump discontinuity becomes continuous in the integral.

§1.5 Differentiation

Differentiating term by term is not always valid. For example, consider the square wave
above:

f(zx) 24 Z cos(2m — 1)z

m=1

which is an unbounded series (consider z = 0).

Theorem 1.3

If f(z) is continuous and satisfies the Dirichlet conditions, and f/(z) also satisfies
the Dirichlet conditions, then f’(z) can be found term by term by differentiating the
Fourier series of f(z).

Example 1.6

We can differentiate the see-saw function, eq. (1.8), with £ = %, even though the
derivative is not continuous. The result is an offset square wave, or by mapping
x — = + 3 we recover the original square wave, eq. (1.7).

§1.6 Parseval’s theorem

Parseval’s theorem relates the integral of the square of a function with the sum of the
squares of the function’s Fourier series coefficients.

Theorem 1.4 (Parseval’s theorem)
Suppose f has Fourier coefficients a;, b;. Then

[ rwpan= [

1 > L ok
§a0+nz::1ancosT+nz::1bnsinT dx

12



We can remove cross terms, since the basis functions are orthogonal. eqs. (1.1)

to (1.3)
_ /21;

1
§a3 =t Z(ai +b2)
n=1

fao—i-Za cos ﬂ—i—Zlﬂstw dz

=L (1.10)

This is also called the completeness relation: the left hand side is greater than or equal to
the right hand side if any of the basis functions are missing.

Example 1.7
Let us apply Parseval’s theorem to the sawtooth wave with FS eq. (1.6).

/LL[f(J:)]2dx = /LLazzdx = §L3

The right hand side gives

X412 413 &1
LG27r2:7r2 an

n=1 n=1

Parseval’s theorem then implies”

i 1 2
== —
—n 6
“Sheet 1, Q3
Note. Parseval’s theorem for functions (f, f) = || f||* is equivalent to Pythagoras for

vectors (v, v) = ||v||*.

§1.7 Half-range series

Consider f(z) defined only on 0 < z < L. We can extend the range of f to be the full
range —L < z < L in two simple ways:

1. require f to be odd, so f(—x) = —f(z). Hence, a,, = 0 (as cos is even) and

by, = /OLf(x) smﬂLx dz (1.11)

~| o

13



So
o nwx
= Z by, sin ——
L
n=1

which is called a Fourier sine series.

2. require f to be even, so f(—z) = f(x). In this case, b, = 0 and

2 (L nmw
an = Z/o f(x) cosTdm (1.12)

and so

1
f(z) = 500 + Z ap, cos EL”T

n=1

which is a Fourier cosine series.

§1.8 Complex representation of Fourier series

Recall that
nnr 1 intx/L —inmx /L.
cos —— =5 (6 te )’
. nmr 1 inmz/L —innx/L
Sl —— = o (6 —¢ )

Therefore, a Fourier series can be written as

1 1 > .
— Z _ ’mﬂ’w/L ; —inma/L
f(x) =500 75 2:: [ iby,) + (an +iby)e }
Z et/ b (1.13)
where form > 0wehavem = n, ¢, = %(an—ibn), and form < Owehaven = —m, ¢,, =

%(a_m + ib_,,), and where m = 0 we have ¢y = %ao. In particular,

1 /L ;
_ —immnz/L
Cm = 57 /_L f(z)e dz (1.14)

where the negative sign comes from the complex conjugate. This is because, for complex-
valued f, g, we have

14



Definition 1.4 (Complex inner product)

L
o= [ frigda

? f* is the complex conjugate of f.
The orthogonality conditions are
L .
/ emme/Leinma/L 4y — o145, (1.15)
-L
Parseval’s theorem now states

e awr= [ de=ol Y ?
[ r@i@de= [ jf@Pde=2 3 el

m=—00

§1.9 Self-adjoint matrices

Much of this section is a recap of IA Vectors and Matrices. Suppose that u,v € C with inner
product

(u,v) = ulv (1.16)

Definition 1.5 (Hermitian matrix)

The N x N matrix A is self-adjoint, or Hermitian, if

Yu,v € CN, (Au,v) = (u, Av) <= AT=A

The eigenvalues )\, and eigenvectors v,, satisfy
Av, = Moy, (1.17)
They have the following properties:
1. Ar = Ay,
2. My A = (vp,v) =0;

3. we can create an orthonormal basis from the eigenvectors.

15



Given b € C", we can solve for z in the general matrix equation
Ar =10 (1.18)

Express b in terms of the eigenvector basis:

N
b= byvn
n=1

We seek a solution of the form

N
T = Z CnUn,
n=1

At this point, the b,, are known and the ¢,, are our target. Substituting into the matrix
equation eq. (1.18), orthogonality of basis vectors gives

N N
A Z CnUp = Z by, Un,
n=1 n=1

N N
Z CnAnUn = Z bnvn
n=1 n=1

As the eigenvector basis is orthogonal we can equate coefficients

CnAn = by,
by,

Cp —

Y

Therefore,

z=Y 1 Un (1.19)

provided \,, # 0, or equivalently, the matrix is invertible.

§1.10 Solving inhomogeneous ODEs with Fourier series
We wish to find y(z) given a driving/ source term f(z) for the general differential equa-
tion
Ly=- s (1.20)
V="q2 77 :

with boundary conditions y(0) = y(L) = 0. The related eigenvalue problem is

£yn = A\n¥n, yn(o) = yn(L> =0

16



which has solutions

2
nmx nm
n(2) = sin——, A, = [ — 121

We can show that this is a self-adjoint linear operator! with orthogonal eigenfunctions.
We seek solutions of the form of a half-range sine series. Consider

o0
= Z Cpsin
"L
n=1
The right hand side is
> nrx
.’13) = Z bn sin T
n=1
We can find b,, by
bn =7 / f(z)sin m dx
Substituting into eq. (1.20), we have
2
nmx nm\* . nmw
= d$2 <Z Cn sin ) = zn:cn (L) SIHT
2
So ZC”(T) sinT = ;bnsinnzx

n

By orthogonality eq. (1.1),

L

y(x) = Z <n7r>2 nsm = Z (1.22)

which is equivalent to the solution we found for self-adjoint matrices for which the ei-
genvalues and eigenvectors are known.

Example 1.8 (Odd square wave)
Consider an odd square wave with L = 1,s0 f(z) =1 from 0 <z < 1.

_4zsm—b eq. (1.7)

1https: / /math.stackexchange.com/questions/4356100/why-is-the-second-derivative-operator-self-
adjoint

17



Then the solution to Ly = f eq. (1.22) should be (with odd n = 2m — 1)

y(:c):Z— _4zsm (2m — )7z

- (2m — 1)m)3
This is exactly the Fourier series eq. (1.9) for

1
y(x) = §$(1 — ) (1.23)
so this y is the solution to the differential equation. We can in fact integrate Ly = 1
directly with the boundary conditions to verify the solution. We can also differenti-
ate the Fourier series for y twice to find the square wave.

18



§2 Sturm-Liouville Theory

§2.1 Review of second-order linear ODEs

This section is a review of IA Differential Equations.

We wish to solve a general inhomogeneous ODE, written

Ly = a(@)y” + Ba)y +(x)y = f(2) (21)
The homogeneous version has f(z) = 0, so
Ly =0, (2.2)

which has two independent solutions y1, y2. The general solution, also the complement-
ary function for the inhomogeneous ODE, is

Ye(x) = Ay1(2) + Bya(z). (2:3)

The inhomogeneous equation

Ly = f(x) (2.4)

has a solution called the particular integral, denoted y,(x). The general solution to this
equation is then

y(T) = yp + Ye- (2.5)

We need two boundary or initial conditions to find the particular solution to the
differential equation. Suppose z € [a,b]. We can create boundary conditions by
defining y(a), y(b), often called the Dirichlet conditions. Alternatively, we can consider
y(a),y'(a), called the Neumann conditions. We could also used some kind of mixed
condition, for instance y + ky/.

Homogeneous boundary conditions are such that y(a) = y(b) = 0. In this part of the
course, homogeneous boundary conditions are often assumed. Note that we can add
a complementary function y. to the solution, for instance § = y + Ay; + By2 such that
y(a) = 7(b) = 0. This would allow us to construct homogeneous boundary conditions
even when they are not present a priori in the problem. We could also specify initial data,
such as solving for z > a, given y,y at z = a.

To solve the inhomogeneous equation eq. (2.1), we want to use eigenfunction expan-
sions (like FS eq. (1.22)). In order to do this, we must first solve the related eigenvalue
problem. In this case, that is

a(z)y” + B(x)y +y(2)y = —Ap(z)y. (2.6)

We must solve this equation with the same boundary conditions as the original prob-
lem. This form of equation often arises as a result of applying a separation of variables,
particularly for PDEs in several dimensions.

19



§2.2 Sturm-Liouville form

Definition 2.1 (Inner product)

For two complex-valued functions f, g on [a, b], we define the inner product as
b
(ho9) = [ £ @) do

The eigenvalue problem eq. (2.6) above greatly simplifies if £ is self-adjoint, that is, if it
can be expressed in Sturm-Liouville form:

Ly=—py) + qy = Awy. (2.7)

A is an eigenvalue, and w(z) is the weight function, which must be non-negative w(x) >
0V z.

§2.3 Converting to Sturm-Liouville form
Multiply eq. (2.6) by an integrating factor F'(z) to give

Fay"+ FBy' + Fyy = —AFpy

d
a(Fozy') — Flay' — Fo'y + FBy + Fyy = —\Fpy

To eliminate the 3’ term, we require F'ow = F(f — ). Thus,

P g
F  «
T A
:>F:exp/ g Y dz (2.8)
a

and further,

(Fay')' + Fyy = —=A\Fpy

hence
p=Fa
q=—Fy
w=Fp

in eq. (2.7) and F(x) > 0 hence w > 0.

20



Example 2.1
Consider the Hermite equation for simple harmonic oscillator,

y" — 22y’ + 2ny =0

In this case foreq. (2.6) a =1, § = —2x, v =0, Ap = 2n. So by eq. (2.8)

9
F:exp/ Txdx—e z?

Then the equation, in Sturm-Liouville form, is

Ly=— (e_ny')/ = Qne_ny (2.9)

§2.4 Self-adjoint operators

Definition 2.2 (Self-adjoint operator)

L is a self-adjoint operator on [a, b] for all pairs of functions y1, y» satisfying appro-
priate boundary conditions if

(Y1, Ly2) = (Ly1, y2)
Written explicitly,

b b
[ vi@ L@ de = [ (Ln@) () de (210)

a

Boundary conditions: Substituting Sturm-Liouville form eq. (2.7) into the above,

(y1, Lya) — (Ly1,yo) = /ab [—~y1(pya) + y1ay2 + y2(py1)’ — yaaqyi] da
- / o (ouh) + valou})] da
Adding —vipyh + yipyh,
= / —(py135)" + (py1y2)'] dz

= [—py1vh + pyiel} (2.11)

which must be zero for an equation in Sturm-Liouville form to be self-adjoint.
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§2.5 Self-adjoint compatible boundary conditions

e Suppose y(a) = y(b) = 0. Then certainly the Sturm-Liouville form of the differen-
tial equation is self-adjoint. We could also choose y'(a) = ¢/(b) = 0 or y + ky’ = 0.
Collectively, the act of using homogeneous boundary conditions is known as the
reqular Sturm-Liouville problem.

e Periodic boundary conditions could also be used, such as y(a) = y(b).

e If a and b are singular points of the equation, i.e. p(a) = p(b) = 0, this is self-adjoint
compatible.

e We could also have combinations of the above properties, one at a and one at b.

§2.6 Properties of self-adjoint operators

The following properties hold for any self-adjoint differential operator L.
1. The eigenvalues \,, are real (also eigenfunctions are real).
2. The eigenfunctions y,, are orthogonal.

3. The y, are a complete set; they span the space of all functions hence our general
solution can be written in terms of these eigenfunctions.

Each property is proven in its own subsection.

§2.7 Real eigenvalues
Proof. Suppose we have some eigenvalue \,, so

Lyn = AnWyn. (2.12)
Taking the complex conjugate, Ly;; = \;wy;,, since £, w are real. Now, consider

b
[ @it — yntyiy) do

which must be zero if £ is self-adjoint, eq. (2.10). This can be written as

b
O = X2) [ wyignda =0

The integral is nonzero, hence A\, — A7 = 0 which implies )\, is real. O
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Aside

Note, if the \,, are non-degenerate (simple), i.e. with a unique eigenfunction y,,, then
Yy = yn hence they are real. We can in fact show that (for a second-order equation) it
is always possible to take linear combinations of eigenfunctions such that the result is
linear, for example in the exponential form of the Fourier series. Hence, we can assume
that y,, is real.

We can further prove that the regular Sturm-Liouville problem must have simple (non-
degenerate) eigenvalues ), by considering two possible eigenfunctions u,v for the
same ), and use the expression for self-adjointness. We find ulv — (Lu)v = [—p(uv' —
u'v)]’ which contains the Wronskian. We can integrate and impose homogeneous bound-
ary conditions to get the required result.

§2.8 Orthogonality of eigenfunctions

Suppose Ly, = Awy, eq. (2.12), and Ly, = Apwy, where A, # Ap,. Then, we can
integrate to find

b b
/ (YmLYn — YnLYm) dz = (A — Apn) / wynym dz = 0 by self-adjointness eq. (2.10)
Since A, # A, we have
b
Vn # m,/ WYnYm dx = 0 (2.13)
Hence, y,, and y,, are orthogonal with respect to the weight function w on [a, b].

Definition 2.3 (Inner product)
We define the inner product with respect to w to be

b
(f.9h = [ 0@ (@)g(a) do (214)
Note,

(f,9)0 = (wf,g) = (f,wg)

Hence, the orthogonality relation becomes

Vn # m, (Yn, Ym),, = 0. (2.15)
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§2.9 Eigenfunction expansions

The completeness of the family of eigenfunctions (which is not proven here) implies
that we can approximate any ‘well-behaved” f(z) on [a, b] by the series

n=1

This is comparable to Fourier series. To find the coefficients a,,, we will take the inner
product with an eigenfunction. By orthogonality,

b o0 b
/ wym fdr = Z an/ WYnYm dz
a 1 a

b
= G / wy?, dz by orthogonality eq. (2.13)
Hence,

b
Wfd
ap = W (2.17)
a wyn X

We can normalise eigenfunctions, for instance

_ Yn ()
Yo(z) = (ﬂ:wm (2.18)

[N

hence
<Yn7Ym>w = 5nm

giving an orthonormal set of eigenfunctions. In this case,

flz) = Z A Y,
n=1

where
b
A, = / wY, fdr
a
Example 2.2
Recall Fourier series in Sturm-Liouville form eq. (1.21):
d2
Ly, = _Taz = AnYn
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where in this case we have

by orthogonality relations eqs. (1.1) to (1.3)

§2.10 Completeness and Parseval’s identity
Consider
b 00 2
/ [f(l‘) - Zanyn] wdz
a n=1

By orthogonality eq. (2.13), this is equivalently

b b o0 b b
/ [fQ—QfZanyn+Zaiyi‘|wd$:/ wad:c—Z<2an/ fynwd:v—ai/ wyidw)

n=1

Note that the second term can be extracted using the definition of a,, ([ fy,wdx =
an [wy? dr) eq. (2.17), giving

b 0 b
/ wf2dx—2ai/ wy? dz
a n=1 a

If the eigenfunctions are complete, then the result will be zero, showing that the series
expansion converges.

b 00 b
/ wf?dr = Z ai/ wy? dz (2.19)
a n=1 a
= Z A? for unit normalised Y}, eq. (2.18)
n=1
If some eigenfunctions are missing, this is Bessel’s inequality:
b o0
/ wf?dz > Z A2

a n=1

We define the partial sum to be
N
Sn(@) =) anyn
n=1

with

f(z)= lim Sy(x). (2.20)

N—oo
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Convergence is defined in terms of the mean-square error. In particular, if we have a
complete set of eigenfunctions,

ey = /abw[f(x) — S(@)2de = 0

This “global” definition of convergence is convergence in the mean, not pointwise con-
vergence as in Fourier series’. The error in partial sum Sy is minimised by a,, above for
the N = oo expansion.

P [ P3| a

aan - a Ynw — anYn x
b

= —2/ (wfyn — %wyi) dz

= 0 if a,, given by eq. (2.17)

It is minimal because we can show % =2/ ;’ wy?2 dz > 0. Thus the a,, givenineq. (2.17)
is the best possible choice for the coefficient at all V.

§2.11 Legendre’s equation

Consider Legendre’s equation arising from V2u = 0 in spherical polars with z = cos 6.
Legendre’s equation is

(1—a22)y" —2zy + \y=0 (2.21)

onz € [—1, 1], withboundary conditions that y is finite at z = +1, at the regular singular
points of the ODE. This equation is already in Sturm-Liouville form, eq. (2.7), with

p=1—2%¢=0w=1.

We seek a power series solution centred on x = 0:
Yy = Z cpx”.
n
Substituting into eq. (2.21),

(1- :1:2) Zn(n — 1)cnac”_2 — Qchnx”_l + )\chm” =0
n n

n

Equating powers of 2",

(n+2)(n+1)cpp2 —n(n —1)c, — 2nc, + Aep, =0

2convergence in mean is weaker than pointwise convergence
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which gives a recursion relation between c,, 2 and c,,.

Cnpa = ("(" - (2.22)

n+1)(n+2)

Hence, specifying co, ¢; gives two independent solutions. In particular,

(=) (6 —M(=A)
o1 x2—|— a0 x4—|—...}

Yeven = Co {1 +

(2;!>\)x3+...}

Yodd = C1 [w +

2 . . . .
Asn — oo, C’C”“ 2 % — 1. So these are geometric series, with radius of convergence
mn
|z| < 1, hence there is divergence at x = +1. So taking a power series does not give a
useful solution.

Suppose we chose A = /(¢ + 1). Then eventually we have n such that the numerator
vanishes. In particular, by taking A\ = £(¢+1), either the series for yeyen OT yoqq terminates.
These functions are called the Legendre polynomials, denoted P (z), are eigenfunctions
of eq. (2.21) on —1 < z < 1 with the normalisation convention Py(1) = 1 (not unit
normalised).

o (=0,)\=0,Pyz)=1
o (=1, A=2P(z)=2x
. 522,A:6,P2($):3"”2771

o (=3\=12 Py(x) = 2%

-1

Note. Py(x) has ¢ zeroes. P, is odd if ¢ is odd, P, is even for even /.
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§2.12 Properties of Legendre polynomials

Since Legendre polynomials come from a self-adjoint operator, they must have certain
conditions, such as orthogonality. For n # m,

1
/ P,P,dx =0
-1

They are also normalisable,

1 2
P2dy = 2.24

We can prove this with Rodrigues” formula (Sheet 2, Q5):

Po(z) = — <£E>n(3321)”

- 2nn!

Alternatively we could use a generating function:

> 1
P,(2)t" = ——— 2.23a
,;) (@) V1= 22t + 12 (2232)
_ 1 2) , 3 2)?
—1+§(2:pt—t )+§(2xt—t )+
_ Lig 2 2
= 1tat+ (32 - 1)+ ..
:P0+P1t+P2t2—|-...
Exercise 2.1. Verify P3 and find P, using binomial expansion.
There are some useful recursion relations’.
L+ 1)Pyy(z) = (20 + 1)z Py(x) — LPp—1 ()
Also,
d
20+ ) Py(2) =  [Pera(z) = P (2)]
§2.13 Legendre polynomials as eigenfunctions
Any (well-behaved) function f(z) on [—1, 1] can be expressed as
f@) =3 aPu(x) (2.25)
=0

*Derived in Example Sheet
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where
2041 1
ap = E;/ f(z)Py(x) dx (2.26)
-1
with no boundary conditions (e.g. periodicity conditions) on f.

Exercise 2.2. Verify f(z) = 222 — 3 = Py(z) + 5P(z) using eq. (2.26)

§2.14 Solving inhomogeneous differential equations

This can be thought of as the general case of Fourier series discussed previously.

Consider the problem
Ly = f(z) =w(x)F(x) (2.27)

onz € [a,b] assuming homogeneous boundary conditions. Given eigenfunctions v, (z)
satisfying Ly, = \,wyy,, we wish to expand this solution as (recall section 1.10)

y(x) =Y cayn(2)
and

F(l’) = Zanyn(l‘)

where a,, are known and ¢,, are unknown. Using eq. (2.17):

B /! : wFy, dx
" i) : wy2 dz
Substituting,
Ly=L Z Cnlp = W Z CpnAnYn = W Z anlYn
By orthogonality,
an
nAn = an = Cp = —
c a c N,
In particular,
= a
y(@) =3 (@) (228)

(assuming \,, # 0,V n).
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We can further generalise; we can permit a driving force, which often induces a linear
response term Awy.

Ly —  wy = f(x) (2.29)

where ) is fixed. The solution eq. (2.28) becomes

) = an~naz 2.30
) =3 5 n(e) (230)

(again X £ A,V n).

§2.15 Integral solutions and Green’s function

Recall eq. (2.28)

E

o B yn(z) [P
u(@) = 30 Punla) = 34 [ w©F(€)ua(€) d€ by eq. (217)
n=1 n a

An nINo
where
N, = / wy? dx
This then gives
o) = 3 SOUOR
G(z,8)
- [ et (231)

where

is the eigenfunction expansion of the Green’s function. Note that the Green’s function
does not depend on f, but only on £ and the boundary conditions. In this sense, it acts
like an inverse operator

L= /d§ Gz, €)

analogously to how Az = b = x = A~!b for matrix equations.
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Part |
PDEs on Bounded Domains

§3 The Wave Equation

§3.1 Waves on an elastic string

Consider a small displacement y(z, t) on a stretched string with fixed ends at = 0 and
x = L, that is, with boundary conditions

y(0,t) = y(L,t) = 0. (3.1)
and initial conditions
0
y(@,0) = p(x), 5/ (2,0) = q(a) (32)

We derive the equation of motion governing the motion of the string by balancing forces
on a string segment (x, x + dz) and take the limit as dz — 0.

3

1~
',\LFS:

0 T T+ Sx L

Let T7 be the tension force acting to the left at angle 61 from the horizontal. Analogously,
let T5 be the rightwards tension force at angle >. We assume at any point on the string

that ‘%‘ < 1, so the angles of the forces, 01, 62 are small. In the = dimension,

Ticosby =Ty costly = T =~ T> = T by small angle approximation

2
So the tension 7 is a constant independent of = up to an error of order O <) % ) . In the

y dimension, since the # are small,

0%y

dy

0
FT:TQSiHGQ—Tlsin91%T< Y

z+ox Oz

ox
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By F' = ma,

Py _ 0%
Fr+F;=(u (51‘)@ = T@&w — gpox
where Fj is the gravitational force and 1 is the mass per unitlength (linear mass density).
We define the wave speed as

¢ = {/— (a constant)
and find
Py Ty 2 0%y
9 w9 o (33)

We often assume gravity is negligible to produce the pure wave equation
10y _ 0%
2 ot2 Ox?

The 1D wave equation is then § = c2y".

(3.4)

§3.2 Separation of variables

We wish to solve the wave equation eq. (3.4) subject to boundary conditions eq. (3.1) and
initial conditions eq. (3.2). Consider a possible solution of seperable form (ansatz):

y(a,t) = X(2)T() (3.5)
Substituting into the wave equation eq. (3.4),
l . i YY)
si=y — S XT'=X"T.
c c
Then
17 X"
AT X
However, L depends only on ¢ and XTH depends only on z. Thus, both sides must be
equal to some separation constant —\.

LD S
AT X
Hence,
X"+ 2X =0 (3.6)
T + AT = 0. (3.7)
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§3.3 Boundary conditions and normal modes
We will begin by first solving the spatial ODE eq. (3.6). One of A > 0, A < 0, A = 0 must
be true. The boundary conditions eq. (3.1) restrict the possible A.

1. First, suppose A < 0. Take x> = —\. Then,

X(x) = AeX” + Be™X* = Acosh(xz) + Bsinh(xx).

The boundary conditions are z(0) = z(L) = 0, so only the trivial solution is pos-
sible: A= B = 0.

2. Now, suppose A = 0. Then
X(z) = Az + B.
Again, the boundary conditions impose A = B = 0 giving only the trivial solution.

3. Finally, the last possibility is A > 0.
X(x) = Acos (ﬁaz) + Bsin (ﬁx)
The boundary conditions give
A=0; Bsin(ﬁL) =0 = VAL =nm.

The following are the eigenfunctions and eigenvalues.

nmwT <n7r
L

2
Xo(w) = Busin T8y, = ) (n>0) (3.8)

These are also called the normal modes of the system because the spatial shape in z
does not change in time, but the amplitude may vary.
The fundamental mode is the lowest frequency of vibration, given by

7T2

n=1= =13

The second mode is the first overtone, and is given by

TN

o |

42
AP .
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§3.4 Initial conditions and temporal solutions

Substituting A,, into the time ODE eq. (3.7),

L n2n22
T+ 72 T=0.
Hence,
t t
T,(t) = Cy, cos nre + D, sin nret. (3.9)

L

Therefore, a specific solution of the wave equation, eq. (3.4), satisfying the boundary
conditions, eq. (3.1), is (absorbing the B,, into the C,,, D,,):

L

t t
yn($7t> = Tn(t)Xn(fB) = (Cn COS% + Dn sin 7’L7T;) . hrmx

Exercise 3.1. Verify it’s a solution.

Since the wave equation eq. (3.4) is linear (and b.c.s eq. (3.1) are homogenous) we can
add the solutions (the y,,) together to find general string solution

e nmct . nmct\ . nmx
y(z,t) = nz::l (C’n cos — + D, sin 7 > sin ——. (3.10)

By construction, this y(z,t) satisfies the boundary conditions, so now we can impose
the initial conditions eq. (3.2):

> . nnx
y(z,0) =p(z) = r; Cp sin I

We can find the C,, using standard Fourier series techniques eq. (1.12), since this is
exactly a half-range sine series. Further,

o0
nme nwT
= = E ——D,, sin ——
q(x) 2 T , Sin T

y(z,0)
ot
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Again we can solve for the D,, in a similar way. Using eq. (1.12):

Ch / Sln —_— dx
I (3.11)
nwT
D, =—— in——d
nmwc Jo q( )sin r

Hence eq. (3.11) is the solution to eq. (3.4) satisfying egs. (3.1) and (3.2).

Example 3.1

Consider the initial condition of a see-saw wave parametrised by &, and let L = 1.
This can be visualised as plucking the string at position &.

_ _J2(1-¢) 0=z <¢
y(x,O)—p(x)—{g(l_x) f<o<l

We also define

The Fourier series eq. (1.8) for p is given by

2sinnmé

Cn = (nm)? '

D, =0

Hence the solution to the wave equation is
[e.e]

2
- Z (nm)2

n=1

sin nmé sin nmwx cos nwct

Take £ = 1,05, = 0,091 = (?2(ml7;n+12 (odd only), e.g. Guitar has + < ¢ <

Violin £ ~ %

W=
~

Solution in characterstic coordinates

Recall sine/cosine summation identities (before eq. (1.1)) which means our general solu-
tion eq. (3.10) becomes

o0

1 nm nmw nmw nmw
y(z,t) = 5,; [Cnsm 7 (x —ct) + Dy cosf(:r—ct)+0 smf(ac+ct)—|—D cosf(:n—l—ct)
= f(x —ct) + gz + ct) (3.12)
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The standing wave solution eq. (3.10) is made up of a right-moving wave (along char-
acteristic  — ¢t = 1, n a constant) and a left-moving wave (x + ct = ¢,  a constant) i.e.
a general solution with arbitrary f, g (see later).

Special case: g(z) = 0ineq. (3.1) = f=g=3Datt=0.

)
?(

§3.5 Separation of variables methodology
A general strategy for solving higher-dimensional partial differential equations is as fol-
lows.

1. Obtain a linear PDE system, using boundary and initial conditions.

2. Separate variables to yield decoupled ODEs.

3. Impose homogeneous boundary conditions to find eigenvalues and eigenfunc-
tions.

4. Use these eigenvalues (constants of separation) to find the eigenfunctions in the
other variables.

5. Sum over the products of separable solutions to find the general series solution.

6. Determine coefficients for this series using the initial conditions.

§3.6 Energy of oscillations

A vibrating string has kinetic energy due to its motion.

1k 2
Kinetic energy = SH / (?’9?) dz
0
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It has potential energy due to stretching by Az given by

1 oy 2 1 L 7oy 2
i = = 1+ =) —1 = —
Potential energy = T'Ax T/C ( ) dz 2T /0 ( ) dz

arc length s

assuming that the disturbances on the string are small, that is, % ‘ < 1. The total energy

on the string, given ¢? = T'/p, is given by

jo %u /OL [(2)2 +cz(giﬂ dz (3.13)

Substituting the solution eq. (3.10), using the orthogonality conditions eq. (1.1),

1 & L e _ nwet  nwe nwet\? |, nrx
EZQ”;/O I Ch, sin 17 + 17 D,, cos T sin” ——
" A\ 2122
+ 2 (C’n cos ¢ + Dy, sin m;c > nLZ cos? mlrjac] d
1 & n?r?c?
=Y (c2+D}) (3.14)
n=1

which is an analogous result to Parseval’s theorem. This is true since

/L o NTX L
cos” ——dz = =
0 L 2

and cos? +sin? = 1. We can think of this energy as the sum over all the normal modes
of the energy in that specific mode. Note that this quantity is constant over time (no
dissipation).

§3.7 Wave reflection and transmission

Recall the travelling wave solution eq. (3.12). The travelling wave has left-moving and
right-moving modes. A simple harmonic travelling wave is

y = Re {Aeiw(t*x/c)} = Acos|w(t —x/c) + ¢]
where the phase ¢ is equal to arg A, and the wavelength A is 2¢/w. In further discussion,
we assume only the real part is used.
Consider a density discontinuity on the string at z = 0 with the following properties.

{,u forz <0 {c_— #L forx <0
u= — c= =

py forz >0 cy =+/-L forxz>0

Ht
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assuming a constant tension 7'. As a wave from the negative direction approaches the
discontinuity, some of the wave will be reflected, given by B ew(t+z/c-) and some of the
wave will be transmitted, given by De®(*~%/¢+), The boundary conditions at 2 = 0 are

Ae.‘w“’— *fc-)

N\ e
- c.

%e'\w(’c /)
Rgg\ec\ta wone

1. y is continuous for all ¢ (the string does not break), so

A+B=D (*)
2. The forces balance, T %
for all ¢. This gives

— 7 9%
_'118x

N which means % must be continuous

z=0"

—iwA  iwB —iwD
+ = ()

c— c— Ct

We can eliminate B from (x) by subtracting == (7).

_ D
2A=D+ D= = Z(cp+c.)
Cyt Cyt

Hence, given A, we have the solution for the transmitted amplitude and reflected amp-
litude to be

2cy Ccy —cC_

A, B= (3.16)
c— +cy c— +cyt

D=

In general A, B, D are complex, hence different phase shifts are possible.
There are a number of limiting cases, for example

1. If c. = ¢y wehave D = A and B = 0 so we have full transmission and no reflec-
tion.

2. (Dirichlet boundary conditions) If Z—J_r — 00, this models a fixed end at x = 0. We
have = — 0 giving D = 0 and B = —A. Notice that the reflection has occurred
with opposite phase, ¢ = 7.

3. (Neumann boundary conditions) Consider Z—f — 0, this models a free end. Then
£ — oo giving D = 24, B = A. This gives total reflection but with the same

phase.
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§3.8 Wave equation in 2D plane polar coordinates

Consider the two-dimensional wave equation for u(r, 8, t) given by

1 9%u 2
with boundary conditions at = 1 on a unit disc given by
u(1,0,t) =0 (fixed rim) (3.18)

and initial conditions for ¢t = 0 given by

u(r,0,0) = @(r,0); (?,;tb = (r,0) (3.19)

§3.8.1 Temporal Seperation

Suppose that this equation is separable. First, let us consider temporal separation. Sup-
pose that

u(r,0,t) =T )V (r,0) (3.20)

Then substitute into eq. (3.17)
T+ AT =0 (3.21)
VIV 4+ AV =0 (3.22)

In plane polar coordinates, we can write the spatial equation eq. (3.22) as

aiv 10V 1 0%V

o Trar o TV 0

§3.8.2 Spatial Seperation

We will perform another separation, supposing
V(r,80) = R(r)©(0).

Substitute into eq. (3.22)

0"+ue =0 (3.23)
r*R" +rR + ()\7“2 — ,u)R =0 (3.24)

where A, ;1 are the separation constants.
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§3.8.3 Polar Solution

The polar solution is constrained by periodicity ©(0) = ©(2r), since we are working on
a disc. We also consider only x> 0. The eigenvalue is then given by u = m?, where
m € NU{0}.

O (0) = Ay, cosmb + By, sinmf (3.25)
Or, in complex exponential form,

Om(0) = Crne™?. melZ

§3.9 Radial Equations

We can solve the radial equation eq. (3.24) (in the previous subsection) by converting

it first into Sturm-Liouville form eq. (2.7), which can be accomplished by dividing by r

with p = m?.

2
%(m’) - mT = —AMR (0<r<1) (3.26)

where p(r) = r,q(r) = m727 w(r) = r, with self-adjoint boundary conditions with R(1) =
0. We will require R is bounded at R(0), and since p(0) = 0 there is a regular singular
point at r = 0.

§3.9.1 Bessel’s equation

This particular equation for R is known as Bessel’s equation. We will first substitute
2 =+Vrin eq. (3.26), then we find the usual form of Bessel’s equation4,

v Gl m*)R =0 (3.27)

§3.9.2 Frobenius Solution

We can use the method of Frobenius by substituting the following power series:

(o)
R=2:F Z anz"
n=0

*May also be written as (zR)’ + (2 — m?/2)R =0
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to find

o
Z lan(n +p)(n+p = 1)2"P + (n+ p) 2P 4 242 4 2| = 0
Equating powers of z, we can find the indicial equation
p2—m2:0 == p=m,—m
The regular solution, given by p = m, has recursion relation
(n +m)2a, + an_o — m?a, =0

which gives

Hence, we can find

" (="
"2nnl(n+m)n+m—1)...(m+1)

a2p =

If, by convention, we let

1
2mm!

ag =
we can then write the Bessel function of the first kind by

0= (3) S e (3) o2

n=0

Exercise 3.2. Use y = \/zR in Bessel’s eqn eq. (3.27) to find y” + y(1 + 1+ — ”;—22) So, as
z — 00,y = —y so we have solns R = %(A cos z + Bsin z).

Also works for m = pu (u ¢ Z) if (n +m)! — I'(n + m + 1). Second soln with p = —m
(integer) is the Neuman function (Bessel function of second kind).

Yon(2) = lim Jycos(pum) — J_,u(2)

p—=m sin pm

Exercise 3.3. Use eq. (3.28) to show that d%(szm(z)) = 2" Jm-1(2) and hence
J (%) + %Jm(z) = Ji_1(2) (3.29)

Repeat with z~™ to find recursion relations

Tono1(2) 4+ Tt (2) = 27me(z)
T 1(2) = T (2) = 200 (2)

(3.30)
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§3.10 Asymptotic behaviour of Bessel functions

If z is small, the leading-order behaviour of J,,(z) is

Jo(z) = 1

o= ()

Yo(z) — 2ln<;>

Yin(2) = — = 2y (3:31)

™ z

Now, let us consider large z. In this case, the function becomes oscillatory;

2
Im(z) ~ — cos <z - % - Z) (3.32)
2 mmT

§3.11 Zeroes of Bessel functions J,,(z)

We can see from the asymptotic behaviour that there are infinitely many zeroes of the
Bessel functions of the first kind as z — co. We define j,,, to be the nth zero of J,,, for
z > 0. Approximately using eq. (3.32),

cos(z— % - Z) =0 = z— % — Z :mr—g (modal point)
Hence
mT ™ ~
ERNT A o = =
Non-examinable
Accuracy,
imn — J 0.1 2
Jmn ZJmn | 22 form > T (3.33)
JImn n 2

For Jy(z) actual values are Jy; = 2.405, jo2 = 5.520, jo3 = 8.653, jo, = nm — 7§ (precision
~ 1%/n).
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§3.12 Solving the vibrating drum

Recall that the radial solutions to eq. (3.26) become
Rin(2) = Rn(VAz) = Adp(VAz) + BY, (VAz)

Imposing the boundary condition of boundedness at » = 0, we must have B = 0 by
eq. (3.31). Further imposing r = 1 and R = 0 gives J,,(v/A) = 0. These zeroes occur at
Jmn =~ nm + "¢ — 7. Hence, the eigenvalues must be

A (3.34)

= ]mn ‘
Therefore, the spatial solution with the polar mode eq. (3.26) is

an(T, 9) = ®m(9>Rmn( V )\mnr)
= (A cosmb + By sin mb) Jo (JimnT) (3.35)

The temporal solution eq. (3.21) is

T = -\*T = Tpn(t) = cos(Gmnct), sin(jmnct)

Combining everything together, the full solution to eq. (3.17) is

NE

u(r,0,t) = Jo(Jonr) (Ao cos jonct + Cop sin jonct)

3
Il
—

n
hE
WE

I (Gmn7) (Amn cosm + By, sinmf) cos jynct (3.36)

ﬁ
—
3
I
_

n
hE
hE

I (JmnT) (Crn cos ml + Dy, sin m@) sin jp,pct

3
I
A
S
I
A
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Now, we impose the initial conditions eq. (3.19) att =0

u(r,0,0) = ¢(r,0) = Z Z I (JmnT) (Amn cosmb + By, sinmb) (3.37)
m=0n=1
and
ou = . ) .
E(T, 0,0) = (r,0) = mX::O?;]mnch(jmnr)(Cmn cos ml + Dy, sin mB)

We need to find the coefficients by multiplying by .J,,, cos, sin and using the orthogon-
ality relations (egs. (1.1) to (1.3) and Sheet 1, Q8), which are

/01 I (Jmn®) Jon (Jmpr)r dr = [J;n(]mn)]Q(Snk (3.38)

N = DN =

[Jm+1(jmn)]25nk (339)

by using a recursion relation of the Bessel functions. We can then integrate to obtain the
coefficients A,,,.

27 1 T
| a0cospt [ dr gy Gpar)o(r.8) = L G Ay

where the § coefficient is 2 for p = 0.

Exercise 3.4. Find the analogous results for the B,,,,, Cpun, Dmn.

Example 3.2
Consider an initial radial profile u(r,0,0) = ¢(r) = 1 — r%. Then, m = 0, By, = 0
for all m and A,,,, = 0 for all m # n. Then

ou
57 (10,00 =0

hence Cyr,, Dy, = 0. We just now need to find

2 Ja(jon) _ J2(jon)
jOn)2 ]gn n

2 1
An:,i/ Jo(Jonr 1—r)2rdr = asn — oo
0 J1(jon)? Jo 0(donr)( ) Ji(

Proving this is left as an exercise using egs. (3.29) and (3.30). Then the approximate
solution is

u(r,0,t) = Z AonJo(JonT) €os jonct

n=1
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The fundamental frequency is wq = joic2 =~ 4.8< where d is the diameter of the
drum. Comparing this to a string with length d, this has a fundamental frequency
of ws = ¥ = 0.77Twy.
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§4 Diffusion equation

§4.1 Diffusion equation derivation with Fourier’s law

Fourier’s law for heat flow is
q=—-kVo (4.1)

where ¢ is the heat flux, k the thermal conductivity and 6 is the temperature. In a volume
V, the overall heat energy () is given by

Q:/chdeV (4.2)

where cy is the specific heat of the material, p is the mass density. The rate of change
due to heat flow is

dQ 00
- VCVPEdV (*)

We will integrate eq. (4.1) over the surface S = 9V, giving

d@
_ .had
dt .San

The negative sign is due to the normals facing outwards. This is exactly

dQ _ A _ [ o2
~0 = [ave)aas = [ —kvioay (1)

Equating these two forms ((*) and (f)) for %, we find

/ (cvp@ —kV20)dV =0
v ot

Since V was arbitrary, the integrand must be zero. So we have

90k 29y
at  cyp

Let D = ﬁ be the diffusion constant. Then we have the diffusion equation

90 -
5 ~ DV =0 (4.3)
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§4.2 Diffusion equation derivation with statistical dynamics

We can derive this equation in another way, using statistical dynamics. Gas particles
diffuse by scattering every fixed time step At with probability density function p(&) of
moving by a displacement . On average, we have

B¢ = [ pl€)¢de =0

since there is no bias the direction in which any given particle is travelling. Suppose that
the probability density function after N At time is described by Pya¢(x). Then, for the
next time step,

Pinynya) = /_OO p(§)Pna(z — &) dE
Using the Taylor expansion,
Povnad) / p(€) [Pmas) + Plyac() (=€) + Phag(@) 5 + | dé
E 2
~ Pyai(a) — Phad(w)ELE] + Plos(@) oo + -
E 2
~ PNAt(-r) + P],\//At(x) [5 } 4+ ...
since [ p(§) d¢ = 1. Identifying Pyas(7) = P(x, NAt), we can write
2 2
P(z,(N +1)At) — P(z, NAt) = ;ﬂP(x,NAt)E[g ]

Assuming that the variance E[{ 2% is equal to 2DA¢, then for small At, we find

oP 0’P

which is exactly the diffusion equation.

§4.3 Similarity solutions

The characteristic relation between the variance and time suggests that we seek solutions
with a dimensionless parameter. If we can find a change of variables of the form 6(n) =
6(z,t), then it will likely be easier to solve. Consider

* (4.5)

5

=3

*Var X = E[X?] — E[X]? and E[X] = 0.



Then changing variables in eq. (4.3),

@:@@:i r 9/:;1@9/
ot  otdn 2 /D32 2t

and
2
pil = Di(gzg?“g - Da“j:(ﬁe) = o0 =
Equating,
0" = —2n0 (4.6)
Let ¢y = 0. Then
"

— = -9y = Iny = —n? + constant

(8

Then, choosing a constant of c%r,

2 e _ i ne—“2 U = cer =cer T
b =eoze "= 0(77)—0\/77/0 d £n) f(m/ﬁ) (47)

where

2 z
erf(z) = \/77_/0 e du

This describes discontinuous initial conditions that spread over time.

D=1

1.0 | — t=0
——t=10"3
—t=10"2
——t=10"1

— t=10°
— t=10!
— t =102

0.5 |-

—0.5

—1.0 |-
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§4.4 Heat conduction in a finite bar

Suppose we have a bar of length 2L with —L < z < L and initial temperature

1 if0<z<L
0(z,0) = H(z) = - 4.8
(,0) = H() {0 if —L<z<0 (*8)
with boundary conditions
o(L,t)=1, 6(—L,t)=0. (4.9)

§4.4.1 Transforming boundary conditions

Currently the boundary conditions eq. (4.9) are not homogeneous, so Sturm-Liouville
theory cannot be used directly. If we can identify a steady-state solution (time-
independent) that reflects the late-time behaviour, then we can turn it into a homogen-
eous set of boundary conditions. We will try a solution of the form

0s(z) = Az + B

since this certainly satisfies the diffusion equation. To satisfy the boundary conditions
eq. (4.9),

1 1
A= —; B=_
2L° 2
Hence we have a solution
r+ L
s = 4.10
5T (4.10)
We will subtract this solution from our original equation for 6, giving
é($7t) = 9(x7t) - 98(‘,1:)
with homogeneous boundary conditions
0(—L,t) = (L, t) =0
and initial conditions
A x+ L
0(x,0) = H(x) — 411
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§4.4.2 Seperation of variables

We will now separate variables in the usual way. We will consider the ansatz
O(z,t) = X(2)T(t) = X" =-\X;T = —DAT (4.12)

The boundary conditions imply A > 0 and give the Fourier modes X (z) = A cos vz +
Bsin v/Az. For cos VAL = 0, we require v/A,, = 2Z for m odd. Also, sin VAL = 0 gives

VA =" for n even. Since 6 is odd due to our initial conditions, we can take

. onrwr nem
Xn:anmT; A = 72

Substituting \,, into eq. (4.12), T = —DAT, we have
Dn?r?
T,(t) = Cpexp (—L2t> .

In general, the solution is

R o D 2,2
O(x,t) = Z by, sin ﬂL‘T exp <—7£27Tt> (4.13)

n=1

§4.5 Particular solution to diffusion equation

Att = 0, we have a pure Fourier sine series. We can then impose the initial conditions
eq. (4.11), to give

1 L
bnzz/_L@(x,O)sin$dx

where

z+ L
2L
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Hence, we can use the half-range sine series and find

2 L 1 2 L
bn:—/ (H(m)—)sinmdx— L in T 4
L Jo 2

L L Jo 2L L
square wave/2, eq. (1.7) sawtooth/2L, eq. (1.6)
which gives
o 2 (_1)n+1
" 2m— )7 nm

where n = 2m — 1, and the first term vanishes for n even. For n odd or even, we find the
same result

1
b, = —
nm
Hence
A =1 nrx n?m?
O(x,t) = nz::l — sin—— exp (—D 2 t)
For the inhomogeneous boundary conditions,
L A
O(x, 1) = x;; + (1) (4.14)

The similarity solution 4 (1 + erf(=—%=)), eq. (4.7), is a good fit for early ¢ (excellent for
y 2 Di q & y

t < 1), but it does not necessarily satisfy the boundary conditions, so for large ¢ it is a
bad approximation.

Plot with L = 1 and D = 1 insertpicture
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§5 The Laplace Equation

§5.1 Laplace’s equation

Laplace’s equation is

V2o =0

(5.1)

This equation describes (among others) steady-state heat flow, potential theory F' =
—V, and incompressible fluid flow v = V. The equation eq. (5.1) is solved typically
on a domain D, where boundary conditions are specified often on the boundary surface.
The Dirichlet boundary conditions fix ¢ on the boundary surface 9D. The Neumann

boundary conditions fix 72 - Vi on 9D.

§5.2 Laplace’s equation in three-dimensional Cartesian coordinates

In R? with Cartesian coordinates, Laplace’s equation becomes

82<p 8290 82<p

=0
Ox? * Oy? + 022

We seek separable solutions in the usual way:
p(2,y,2) = X(2)Y (y)Z(2)
Substituting,
X"YZ+XY"Z+XYZ"=0

Dividing by XY Z as usual,

X" _y" z"
Y=V -7= —X¢ (constant)
v _Z// X//
= "% =" Am  (constant)

Z// _Xl/ Y//
Z X Y

From the eigenmodes, our general solution will be of the form

cp(x,y,z) = Z aﬁmnXK(x)Ym(y)Zn(z)

l,m,n
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Example 5.1 (Steady heat conduction)

Consider steady (%—f = 0) heat flow” in a semi-infinite rectangular bar, with bound-
ary conditions p = 0atz =0,z =a,y =0andy =b;andp =latz=0and ¢ = 0
as z — 0o.

9
@=°
(Y
b 2 (_e = O
7 7 2 w0 (CO00)
(e’:l ok — >
3-=0 (“m) f\
~ Q:O
a
'
We will solve for each eigenmode successively. First, consider X" = —\,X with
X(0) = X(a) = 0. This gives
2,2
Ao = Z—Z; Xy :sin@
a a
where ¢ > 0,/ € N. By symmetry,
2.2
Am = mb;- ; Y, =sin ;ry

For the z mode,
2 m?
Z" = MZ =M+ Ip)Z =1 <a2 + b2>z
Since ¢ — 0 as z — oo, the growing exponentials must vanish. Therefore,

2 2 1/2
Zom = €xXp _<a2 + b2> T2

Thus the general solution eq. (5.4) becomes

( ) Z . Amx | mmy 0 i m? 12
T,Y,2) = Y Qg SID — sin exp|—| =+ — z
80 y — Im a b p 0/2 b2 U
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Now, we will fix agy,, using ¢(z,y,0) = 1 using the Fourier sine series eq. (1.12).

2 b2 ro L
A = f/ 7/ 1sin =2 sin ey dx dy
bJo alo a b

square wave square wave

So only the odd terms remain, giving

- — 4a 4b
mT a2k — ) b(2p — )

where ¢ = 2k — 1 is odd and m = 2p — 1 is odd. Simplifying,

1
Gpm = 276 for ¢, m odd
w2lm

So the heat flow solution is

16 lrx  ( 2 w2\
sp(x7 y7 Z) — Z Sinﬂsin%exp [— <a2 + 7;;;) Tz
£,m odd

As z increases, every contribution but the lowest mode will be very small. So low
£, m dominate the solution.

Cross sectionals: insertpicture

"i.e. eq. (4.3) with %—f = 0 giveseq. (5.1)

§5.3 Laplace’s equation in plane polar coordinates

In plane polar coordinates, Laplace’s equation becomes

10/ dp 1 9%p B
a(a) g =0 (56)

Consider a separable form of the answer, given by
p(r,0) = R(r)©(0)
We then have

0" +u®=0; r(rR) —uR=0
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§5.3.1 Polar equation

The polar equation can be solved easily by considering periodic boundary conditions.
This gives 1 = m? and the eigenmodes as in eq. (3.25)

O, (0) = cosmb, sinmb

§5.3.2 Radial equation

The radial equation is not Bessel’s equation, since there is no second separation constant.
We simply have

r(rR)Y —m?R=0 (5.7)
We will try a power law solution, R = ar?. We find
B-m?=0 = B=4m

So the eigenfunctions are

which is one regular solution at the origin and one singular solution.
In the case m = 0, we have

(rR")Y =0 = rR = constant = R =logr
So
Ry(r) = constant or logr
The general solution is therefore
a o [e.9]
o(r,0) = ?0 + cologr + Z (@, cosml + by, sinm@)r’™ + Z (¢ cosml + dy, sinm@)r—™

m=1 m=1

(5.8)

Example 5.2 (Soap Film on a Unit Disc)

insertpicture

Consider a soap film on a unit disc. We wish to solve Laplace’s equation eq. (5.6)
with a vertically distorted circular wire of radius » = 1 with boundary conditions

©(1,0) = f(0). The z displacement of the wire produces the f(6) term. We wish
to find ¢(r,0) for r < 1, assuming regularity at » = 0. Then, ¢;, = d,;, = 0 and so
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eq. (5.8) becomes
o(r,0) = 50 + mz::l A, cos B + by, sin mO)r'™

Atr =1,

©(1,0) = =—+ > (amcosmb + by, sinmb)
m=1

_ %
2
which is exactly the Fourier series. Thus by eq. (1.5),

1 2 1 27
U = — f(0)cosmbdl; by =— f(0) sinmf df
™ Jo m™Jo

We can see from the equation that high harmonics are confined to have effects only
near r = 1.

¢ 1

v
§5.4 Laplace’s equation in cylindrical polar coordinates
In cylindrical coordinates,
18<3<p>+182g0+82g0_0 (5.9)
ror\ or r2 062 022 ’

With ¢ = R(r)©(0)Z(z), we find
0" =—p0; Z"=XZ; r(rR) + N’ —pR=0
The polar equation can be easily solved (as before) by

= m?;  ©,,(0) = cosm#, sinmé
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The radial equation is Bessel’s equation eq. (3.26), giving solutions
R = Jn(kr), Yo (kr)

Setting boundary conditions in the usual way, defining R = 0 at r = @ means that

6

Im(ka) =0 = k= *7";”

The radial solution is

Ryn(r) = I, (]mnr) (5.10)

a

We have eliminated the Y,, term since we require r = 0 to give a finite ¢ and Y;, - —o0
asr — 0.

Finally, the z equation gives
7" =k7 = Z=e" M

We typically eliminate the e"* mode due to boundary conditions, such as Z — 0 as
z — o0o. The general solution is therefore

Jmn _Imnr
o(r,0,z) z:: z:: A, cOS MO + sin m#) ( ; r)e (5.11)

Exercise 5.1. Describe steady-state heat flow in a semi-infinite circular wire with b.c.s

p=0atr =a,¢=Tpatz=0and ¢ — 0as z — oco. Use sections 3.9 and 5.1. Show
Jon?

that the soln is ¢(r,0,2z) = >0, %Jo(”” r)e_T.

§5.5 Laplace’s equation in spherical polar coordinates

Recall that

x = rsinf cos
y =rsinfsinp
z =rcosf

dV = r?sinfdrdf de
with0 <7 < 00,0 <80 <7,0<¢p<2m.
In spherical polar coordinates Laplace’s equations eq. (5.1) becomes,

10 [ 4,00 1 9 0P 1 9%
i il - 90— e ——— 12
r2 Or (T or ) + r2sin 6 90 <sm 00 ) + r2sin? § Q2 (5.12)

)
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We will consider the axisymmetric case; supposing that there is no ¢ dependence. We
seek a separable solution of the form

®(r,0) = R(r)0(0)
which gives

(sin Q") 4+ Asin0 = 0; (r*R')Y — AR =0 (5.13)

§5.5.1 Polar (Legendere) equation

Consider the substitution 6 — = with z = cos 6, ‘é—g = —sin 6 in the polar equation. This
gives 49 = —sin #9€ and hence

.. d . 9 ,dO . d 5, dO
— _ — — 1 J—
smﬁdx[ sin de] + AsinfO© =0 = dx[( x )d:c} +X0 =0

This gives Legendre’s equation eq. (2.21), so it has solutions of eigenvalues A\, = ¢({+1)
and eigenfunctions section 2.11

©¢(0) = Py(z) = Py(cos ) (5.14)

§5.5.2 Radial equation

The radial equation then gives
(r*R) —(t+1)R=0
We will seek power law solutions: R = ar?. This gives
BB+1)—Ll+1)=0 = B=(p=—0—-1

Thus the radial eigenmodes are

§5.6 General axisymmetric solution

Therefore the general axisymmetric solution for spherical polar coordinates is

O(r,0) = i(aerﬁ + ber 1) Py(cos 0) (5.15)
=0

The ay, b, are determined by the boundary conditions. Orthogonality conditions for the
P, can be used to determine coefficients (see eq. (2.24)).
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Example 5.3

Consider a solution to Laplace’s equation on the unit sphere with axisymmetric
boundary conditions at » = 1 given by

®(1,0) = f(0)
Given that we wish to find the interior solution, b,, = 0 by regularity. Then,
= Z agPy(cos0)
=0

By defining f(0) = F'(cos§),

=Y aPi(x)
=0
We can then find the coefficients in the usual way, given by eq. (2.25)

_20+1
+/Fpg

Exercise 5.2. Show f(0) = sin? 6 yields a solution ®(r, 6) = 2(1 — Ps(cos 0)r?)

§5.7 Generating function for Legendre polynomials

Consider a charge at 7y = (z,y, 2) = (0,0, 1). Then, the potential at a point P (represen-
ted by r = (z,y, z)) becomes

1 1
Ir—rol (224 y2+ (z —1)2)1/2

1
= in spherical coordinates

(r*(sin® ¢ + cos? p) sin? @ +7r2 cos? § — 2r cos 6 + 1)1/2
1 ]

$2+y2

o(r) =

1
~ (r2sin? 60 + r2cos?f — 2rcosf + 1)1/2
1
(r2 — 2rcosf + 1)1/2
_ 1
(2 —2rT 4 1)1/2

where T = cos 6. This function @ is a solution to Laplace’s equation where r # r.

satisfies V2® = 0 where r # 7.

Exercise 5.3. Verify ® =

1
[r—ro|
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Note that we can represent any axisymmetric solution eq. (5.12) as a sum of Legendre
polynomials eq. (5.15) (with b,, = 0) for r < 1. Now,

e — Z CLng
Vre —2re +1 =0

With the normalisation condition for the Legendre polynomials (1) = 1 at x = 1, we
find

1 o
= Z aprt
- =
Using the geometric series expansion (=~ = 1+r+r?+...), we arrive at a; = 1. This
gives
5.16
\re — 27‘56 +1 KZO ( )
which is the generating function for the Legendre polynomials. Expand LHS with bino-

mial theorem to find Py(z) (coeff of r‘th term). Use to obtain normalisation condition
eq. (2.24) (Sheet 2, Q5).

Example 5.4 (Electric multipoles)

Consider charges along z—axis at z = =+a, 0, viewed from = >> a with ¢ — 0 as
r — oo (i.e. a, = 0, singular part of expansion eq. (5.15)).

/=0:
(o |
ﬂ/
e

® o 2 - monopole field of point charge g.

?=1:




)r
x

=
“-—C‘/
-
—

¢ C‘;Sze - dipole field for two opposite charges.

(=2

¢ x %?’COST# quadrupole field.
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Part IlI
Inhomogenous ODEs; Fourier
Transforms

§6 Dirac delta function

Definition 6.1 (Dirac Delta Function)
We define a generalised function §(x — &) such that

o(x—¢) =0Va#E

/Zé(:ﬂ—f)dx: 1. 6.1)

This acts as a linear operator [ dz §(x—¢&) on some arbitrary function f(x) to produce
a number f(&).

| =)@ = 1) (62)

This relationship holds provided that f(z) is sufficiently ‘well-behaved” at z = ¢
and z — foo.

Note. e Strictly, the 0 “function’ is classified as a distribution, not as a function. See
lectures notes of Jozsa and Skinner section 6.1 for more details.

e For this reason, we will never use § outside an integral, although such an integral
may be implied.

e The § function represents a unit point source (e.g. mass, charge) or an impulse.

§6.1 Some limiting approximations

1
ZIJ>E

1
2] < 5 -

r<—1

n

A discrete approximation as n — oo is 6,, =

O s ©

Continuous: We can approximate the ¢ function using a Gaussian approximation as
e —0.

2

exp [— x ] (6.3)

g2

1

ENTT

55(56) =
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N
7
N &

Figure 1: Discrete approximation

Therefore verifying eq. (6.2),

0o 1 1.2

/_O:O f(z)d(x)dx = ;1_% iy exp [—82] f(z)dz

Lety=2

E-/
—lim [ ——exp [—yﬂ fley) dy
e—=0 /o ﬁ

e}

=t [ e[| +eur (0) + -y

= f(0)

for all “well-behaved functions’ f at 0, +-00”.

SRS

x

"Well behaved at 0 lets us taylor expand and well behaved at +=co means it doesn’t diverge faster than the
Gaussian.
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Further Examples We could alternatively use the Dirichlet kernel (as n — o0)

. 1 o
on(z) = SH;_ZI =5 ek 4k
—-n

or even

on(x) = D sech?na
2

§6.2 Integral and derivative of delta function
§6.2.1 Integral of ()

We define the Heaviside step function by

1 >0
0 <0

H(z) = {
For z # 0, we have
H(z) = / sy dt

Thus,

d
—H(@) = b(x)

where this identification takes place under an implied integral.

(6.6)

(6.7)

Exercise 6.1. Verify using eq. (6.5) §(z) = lim,,_, % sech? nz [You will find 1 (tanh nz +
1) which is an approximate step function. This also gives H(0) = % (an alternative

definition) ].

§6.2.2 Derivative of 6(z)
We define §'(z) using integration by parts.
| d@-9f@dr = -s@)% - [ sa-9r @
— [ b= 9f @) ds
| d@-9f@ar =)

This is valid for all f that are smooth at x = &.
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Example 6.1

Consider the Gaussian approximation eq. (6.3):

Then,

30

20

()

U
€

—10 |

—20 |

—30 |
I

S8 ol

§6.3 Properties of delta function
§6.3.1 Sampling Property

Note that

fl§) a<&<b

) (6.9)
0 otherwise

[ 1@ite - ¢z = {

So the ¢ function only ‘samples” values within the integral range. This is known as the

sampling property.

§6.3.2 Even Property

Letu = —(x — &), and consider

| t@e-w=eyde= [ 7 (e~ wstw)(-dw

[e.9]
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- 1©
Hence,
| t@s-@-)de = [~ f@)é@ - €)ds (6.10)
This is called the even property.
§6.3.3 Scaling Property
Now, consider
[ f@tate =) ds = 5(6) (611)

Exercise 6.2. Show this using u = ax (noting integral limit order with a < 0).

§6.3.4 Advanced Scaling Property

Let g(z) be a function with n isolated roots at z1, . .., x,. Then, assuming ¢’(x) does not
vanish at the z;,

S(g(a)) = 3 O —a1)

2 )| (612)

This is a generalisation of the above, known as the advanced scaling property.

Exercise 6.3. Show for g has 1 root at x = ;.

Example 6.2
= /OO F(@)6(® — 1) de
e 5z —1) —lte 5z +1)
_/175 f(x) 52| dx+/,1,5 f(zx) 2] dz

(f(1) + f(=1)).
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§6.3.5 Isolation Property

Now, if g(z) is continuous at z = 0, then

9(x)d(z) = g(0)é(x) (6.13)
inside an integral.

Exercise 6.4. Evaluate and show [;° ¢'(z* — 1)2?dz = — 1 using u = 2% — 1 and eq. (6.8)

and eq. (6.12).

§6.4 Fourier series expansion of delta function

Consider a complex Fourier series expansion,

o 1 (L . 1
inmx/L. _ —inmx/L _
o(x) = g cne b n=g7 LL d(x)e dz =

W 2L
Hence,
Sa)= L S einme/L (6.14)
2L~ ’
Let f(z) be a function, so f(z) = 3°°__ d,,¢"™*/L. Then (using section 2.2), their inner
product is given by

L 1 & L . . s
* _ inmx/L jintx/L _ _
[ F@ia)de = o n;m d [ Cemmaltenmelidy = 37 d, = f(0)

n=—oo

The Fourier expansion of the ¢ function can be extended periodically to the whole real
line. This infinite set of ¢ functions is known as the Dirac comb, given by

Z d(x —2mL) = % Z et/ L

m=—00 n=—0oo

§6.5 Arbitrary eigenfunction expansion of delta function

In general, suppose
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with coefficients, eq. (2.17)

T @ (@) de
__ w(©ya(&)
o w(T)yn(x)? dz
= wp(§)Y,(§) for unit norm eq. (2.18)
Then,
3z — &) = w(€) Y Yu(&)Yalz) = w(z) Y Ya(£)Ya(2)
n=1 n=1

since ﬁggé(:c — &) =0d(z — &) by eq. (6.13). Hence,

b —€) = w(@) Y y”(%y”(f”) (6.15)
n=1 n

where N, = | (f wy?2 dz is a normalisation factor.

Example 6.3

Consider a Fourier series for y(0) = y(1) = 0, with y,(z) = sinnmz. From the sine
series coefficient expression eq. (1.11),

dz—-¢& =2 Z sin nmwé sin nwx
n=1
where 0 < & < 1.

Exercise 6.5. 1. Integrate both sides to show } >, (s

_1 _1
“om-1 = 1Whene =3

2. Integrate twice and compare with G(z,&) ?? or eq. (2.31).
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§7 Green’s Functions

§7.1 Physical motivation: Static Forces on a String

Consider a massive static string with tension 7" and linear mass density y, suspended
between fixed ends (L = 1)

y(0) =y(1) = 0. (7.1)

By resolving forces, we have the time independent form eq. (3.3)

d?y
a2z M =0
We will solve the inhomogeneous ODE
d?y

with f(z) = — 5 subject to eq. (7.1).

§7.1.1 Direct integration

This has been placed in Sturm-Liouville form. We can integrate directly and find eq. (7.2)
gives
1Y 2

Y=o + kiz + ko

Imposing boundary conditions eq. (7.1),

o) = (-42) - 5ot - ) (7.3)

§7.1.2 Superposition of point masses

Consider alternatively a solution obtained by solving the equation for a single point
mass m = pudx suspended at z = §; on an very light string. We can then superimpose
the solutions for each point mass to find the overall solution. For a single point mass, the
solution is given by two straight lines from (0, 0) and (1, 0) to the point mass (&;, vi(&;)).
The angles of these straight lines from the horizontal are given by 6;,6>. Resolving in
the y direction to find y;(&;),

0 =T(sinf; + sinfy) — dmg

—Yi —Yi
= T< + ) —om
& 1-¢ g
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b

a{' . \Gh
F-- %«\3
=T (yi(1 = &) +yi&) = dmg&i(1 = &)
coyil&) = #&(1 —&)

So the solution is

‘()_—(5mg x(1-&) z<§
Y = &S(l—x) z>¢

which is the generalised sawtooth. This can alternatively be written

yi(x) = fi(§)G(x,§) (7.4)

where f; is a source term, and G(z,§) is the Green’s function, the solution for a unit
point source. Since the differential equation is linear, we can sum the solutions for N
point masses, giving

N

y(x) = fi(§)G(z,&)

i=1

Taking a continuum limit,

fi(e) = 0 = TN () ar = f(a) = 2

which gives (z — §)

1
y(z) = /0 FOG(w,) de (7.5)

where we are integrating over all source positions. Substituting the Green’s function,

vy = (B [[ea-mag+ [ a01-9ae
>€ <€
-l e 2
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2 2
—ug\ [T T T
=—)|=101—-2)—-0+ = — — =
(T)<2( x) t3 x(ac 2))
—pg\ 1
= (22} . 241 =
(=) 5ot -2
So we have found the correct solution in two ways; once by direct integration, and

once by superimposing point solutions. In general, direct integration is not trivial, and
Green'’s functions are useful in this case.

§7.2 Definition of Green’s function

We wish to solve the inhomogeneous ODE eq. (2.21)

Ly = a(x)y” + B(x)y +~(x)y = f(x) (7.6)

ona < z < b, where a # 0 and «, 3, are continuous and bounded, taking homogen-
eous boundary conditions y(a) = y(b) = 0.

The Green’s function for £ in this case is defined to be the solution for a unit point source
atz = . Thatis, G(z, §) is the function that satisfies the boundary conditions and

LG(x,8) = d(x =) (7.7)
so G(a,&) = G(b,€) = 0. Then, by linearity, the general solution is given by
b
v@) = [ 1OG@. € de 78)

where y(z) satisfies the homogeneous boundary conditions. We can verify this by check-

ing
ty= [ LG os©e = [ -0 =1

So the solution is given by the inverse operator

_ pr—1r. -1 _ b
y=LUf; L —/dSG(%f)

§7.3 Defining properties (summary)

The Green’s function spits into two parts;

Gl(x>£) (I§£B<£

Gle.0) = {Gz(azvf) E<x<b

(7.9)
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1. Hom solns G solves homogenous equation V = # & so

LGy = LGy =0 (7.10)

2. Hom b.c.s G satisfies the homogeneous boundary conditions, so

Gi(a,§) =0, Ga(b,§) =0 (7.11)

3. Continuity condition G must be continuous at = £, hence

4. Jump condition There is a jump condition; the derivative of G is discontinuous at
x = . This satisfies

_ 1 (7.13)

r=£_ B Oé(f)

dGa

dG, B dGy
dx

né+ _ bl 3

-

r=£4

where a(z) is defined in eq. (7.6).

§7.4 Explicit form for Green’s functions

We want to solve
LG (2,€) = 0(x = §)
ona < x < b, subject to homogeneous boundary conditions G(a, ) = G(b,§) = 0 (with

a < & < b). The functions G, G satisfy the homogeneous equation, so LG;(z,&) = 0.

§7.4.1 1 & 2, Solve hom eqn with hom b.cs

Suppose there exist two independent homogeneous solutions y;(z),y2(z) to Ly = 0.
Then, G| = Ay + Byp, such that Ay; (a) + By2(a) = 0, which gives a constraint between
A and B. This defines a complementary function y_ (x) such that y_(a) = 0. The general
homogeneous solution with G (a) = 0 is

Gy =Cy_ (7.14)

C will be found later.

Similarly we can define y; as a linear combination of y;, y2 such that y; (b) = 0.

Gy = Dy, (7.15)
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§7.4.2 3. Why is GG continuous at z = £?

Suppose G was discontinuous at z = £, so locally G o< H(x — &) + ... eq. (6.7) which
implies G’ «x §(z — &) and G” « §'(z — £). So LHS LG x a(z)d (z — &) + B(z)d(z — &) +
v(z)H (x — £). But on RHS there is not §' (z — &) # 6(z — &) #. Hence, we have [G]g =0,
so we require G1(&, &) = Ga(&, §) for continuity, hence

Cy-(§) = Dy+(¢) (7.16)

§7.4.3 4. Why the jump condition for G’ at z = ¢

Integrate LG(z,§) = §(x — &) across = = &:

§+
LHS = LG dz
[

§+
— [ aG"+8G' +1Gds
&
Integrate by parts
_ nET o ¢t & ol "
=Gl +B-a)Gl_+ [ (y=F +a)Gda
I =
by cty of a(x)

The latter two terms are 0 as £ — £_ by continuity of Green’s function eq. (7.12).
RHS = [£ 6(z — &) dz = 1.

Thus [G/]g = L wehave

a(f)
/ o / _ L
DY (&) = OO = g (7.17)
We can solve these equations eqs. (7.16) and (7.17) for C, D simultaneously to find
_ n© _ O
C=Sowe P e 719)

where W (¢) is the Wronskian

W(&) = y— (O (§) — y1()y- (&) (7.19)
which is nonzero if y_, y, are linearly independent. Hence,
y—(@)y+(§) ¢

a<zx<
ﬂ%@z{f%?& ~ (7.20)
aE@we &Sz sb
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§7.5 Solving boundary value problems
We know that the solution of Ly = f eq. (7.6) with y(a) = y(b) = 0is

o) = [ Gles©ae

We can split this into two intervals given that G = G for £ > zand G = G for < z.
T b
y@) = [ Gala OF©ds+ [ Grlw O)f(©) e

_ Ty-(§)[(E) Ty (§)f(E)
= y+($)/a (Wdf‘i‘y—(x)/a de (7.21)

Note. 1. Note that if £ is in Sturm-Liouville form, so 8 = ¢/, then the denominator
a(§)W (&) is a constant and G is symmetric; G(z,§) = G(&, z).

Exercise 7.1. Show that %(a(z)W(:p)) = 0 using 8 = o and self-adjoint form
eq. (2.10) y—Ly4 — y+Ly—.

2. Often, by convention, we take o = 1 (however Sturm-Liouville form typically
takes a < 0).

3. Indefinite integrals [, in eq. (7.21) are particular integrals in general solution
eq. (2.5).
Exercise 7.2. For —y" = f(x), y(0) = y(1) = 0 directly construct the Green’s func-
tion eq. (7.4)

2(1-6) w<¢

El—xz) x>¢

(i.e. using ypom = Az +band a = —1).

Example 7.1
Consider " — y = f(z) with y(0) = y(1) = 0. Let us construct G(z, §).
1 & 2 Homogeneous solutions are y; = €%, y» = e~*. Imposing boundary conditions

(by inspection),

_ JCsinhz 0<z<¢
- | Dsinh(1—z) £<z<b

3 Continuity at z = £ implies

sinh(1 — &)

Csinh¢ = Dsinh(1 —¢) = C =D Sinh €
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4 The jump condition is
—Dcosh(1 —&) — Ccosh¢ =1
Hence,

—DJcosh(1 — &) sinh & + sinh(1 — §) cosh {] = sinh §
—D[sinh((1 — §) + §)] = sinh &
—Dsinh1 =sinh &

_ _sinh§
~ sinhl
o —sinh(1 —¢)
0= sinh 1
So the solution is,
_ —sinh(1—=z) [® sinhz [l |
y(o) = == [Csinner© g - ST [sinh(1-s©)de  (7:22)

Suppose we have inhomogeneous boundary conditions. In this case, we want to find
a homogeneous solution y,, that solves the inhomogeneous boundary conditions. That
is, Ly, = 0 but y,(a) # 0,y,(b) # 0 are as required for the inhomogeneous boundary
conditions.

Then, by subtracting this solution from the original equation, we can solve using a ho-
mogeneous set of boundary conditions. We can find Green’s fcn for Ly, = f with
yg(a) = y4(b) = 0 where y;, =y — yp.

Example 7.2
Suppose vy’ —y = f(z) with y(0) =0, y(1) = 1.

yp = Asinhx + B coshx
yp(0) =0 = B=0

1
sinh 1

yp(l) =1 = A=

Solve for y, = y—y, with y4(0) = y,(1) = 0. Solution y(z) = S 4y (ie. solution
eq. (7.22)).
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§7.6 Higher-order ODEs (BVP)

Suppose Ly = f(z) where L is an nth order linear differential operator, and «(z) is
the coefficient for the highest degree derivative («a(z) % ). Suppose that homogeneous
boundary conditions are satisfied. Then we can define the Green’s function in this case
to be the function that solves

G(z,6) =0z — &)
which has the properties:

1. G1, G2 are homogeneous solutions satisfying the homogeneous boundary condi-
tions;

2. W) = P () for k € {0,...,n—2);
3. Gy e -6 VE) = ey
See Sheet 3, Q4
§7.7 Eigenfunction expansions of Green’s functions

Suppose L is in Sturm-Liouville form with eigenfunctions y,, (z) and eigenvalues \,,. We
seek G(z, &) = > 02 Anyn(z) satisfying LG = §(x — &).

LG = Z AnLyn
_ZA A (2)yn(z) by eq. (2.12)
The § function has expansion
§(x — Z Un(E)yn by eq. (6.15) where N,, = /wyn dx

Hence,

Thus,

G(x,€) = i/"}gzuy;;zl (7.23)

= Z Ya(O¥n () (unit norm)
which was already obtained earlier in the course when studying Sturm-Liouville theory

ineq. (2.31).
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§7.8 Constructing Green’s function for an initial value problem

Suppose we want to solve
Ly = f(t) fort > a with y(a) = 3/(a) = 0, (7.24)
using G(t, 7) satisfying LG = 6(t — 7) with the same b.cs.

For ¢t < 7, we have

G1 = Ay (t) + Bya(t);  Ayi(a) + Bya(a) = 0;  Ayy(a) + Byy(a) =0

If A # B # 0, then we can solve this by dividing out A, B and find y,y5 —y2y] = 0. Since
the Wronskian at a cannot be zero, A = B = 0. So G1(t,7) = 0 for a < t < 7, so there is
no change until the ‘impulse” att = 7.

For ¢ > 7, by continuity, eq. (7.12), we must have G2(7,7) = 0. So we choose a comple-
mentary function Gy = Dy, (t) with y(t) = Ay:1(t) + By(t), and b.c y(7) = 0. The
discontinuity in the derivative, eq. (7.13), implies that

Gy(r.7) = Gh(r.7) = Dy (7) =
Hence,
Ayi(r) + Bup(r) = —~ = D(r) = ——
a(r) a(T)y’ (1)

or we can find soln for A, B directly.
Hence we have a non-trivial solution

G(t,7) = {0 o) i -7 (7.25)

erA) >T
The initial value problem eq. (7.24) has solution
v(0) = [ Galer)iiryar = [(LOID g (7.26)
a o Yy(7)

Causality is ‘built in” to this solution. Only forces which occur before ¢ may have an
impact on y(t).

Example 7.3

Let us solve ¢y — y = f(t) with y(0) = /(0) = 0. The homogeneous solution and
initial conditions are

t<T = G1 =0
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and
t>7 = Gy = Ae' + Bet

By continuity Ga(7,7) =0 = G2 = Dsinh(t — 7). Now,
1
G|z () 1 = Gy(r,7)=Dcosh0=D =1

Hence, the solution eq. (7.26) is

y(t) = /Ot f(r)sinh(t — 7)dr
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§8 Fourier Transforms

§8.1 Definitions

Definition 8.1 (Fourier transform)

The Fourier transform of a function f(x) is
Fo) =FH®) = [ f@)e ™ da (81)
The inverse Fourier transform is
1 o o .
-1 _ ikx
(f) (@) = = /_Oo Fk)er dk (8.2)

Different internally-consistent definitions exist, which distribute the multiplicative
constants in different ways.

Theorem 8.1 (Fourier inversion theorem)

For a function f(z),
FHF))() = f(=) (8.3)

with a sufficient condition that f and f are absolutely integrable, so

/Oo f(z)|dz = M < oo.

—00

In particular, f — 0 as z — +o0.

Example 8.1

Consider the Gaussian,

fz) =

2
Ufexp[ x} (8.4)

We wish to compute its Fourier transform. Since i sin kz is an odd function,

2

f a\f/ exp[—] exp|—ikz| dx Uf/ expl 2] cos(kx) dx
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Consider, using Leibniz’ rule,

df -1 e

—22]
& U—ﬁ _ooa:exp [02] sin kx dz

Integrating by parts,

df 1 |02 —z2]| | > 1 © kg2 — g2
— = —exp|—5| sinkx e ——exp|—5| coskx dz
2 o L VT o

dk o7 o 2 2
1 5 1
ko? ~
= —Tf (k)
This is a differential equation for f, which gives
_ 2 2
F(k) = Cexp [—"’ 4 ]

Suppose k = 0. Then, in the original expression for the Fourier transform, we can
directly find f(0) = 1. Hence C exp{—%} =1 = C = 1. Hence,

_ 2,2
f(k) = exp l—k i ] (8.5)

which is another Gaussian with the width parameter inverted.

Exercise 8.2. Show that 71 (e**"/4) = f(z) (try completing the square).

Exercise 8.3. Show that f(z) = e~%%l, ¢ > 0, has FT
~ 2a

f= PR (8.6)
in two ways.
1. Integrate 2 [;° e~ " cos kx dz by parts twice.
2. Integrate [° e (a=H)7 dy 4 [0 ele+ik)z 4z directly.
. e >0
Note that if f(x) = {O 5 <0 (a > 0) then
Flk) = — (8.6a)
ik +a
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§8.2 Converting Fourier series into Fourier transforms

Recall that the complex form of the Fourier series, eq. (1.13), is

o= 55 e

n=—oo

where k, = “*. We can write in particular k,, = nAk where Ak = 7. Then,

1 L . A L .
¢ =57 [L f(z)e Hn® qg = Q—f LL f(x)eHn dy
Now, re-substituting into the Fourier series,
> Ak L _—
flz) = n:Z_OO ﬁelk”x /_L f(ze Hne dg

But interpreting the sum multiplied by Ak as a Riemann integral,

S Akglky) - /_ O:O g(k) dk (8.6b)

n=—oo

So,
1 . L po ]
flx) — / —em"x/ f(:v’)e_m dz’ dk
—oo 2T s
Taking the limit L — oo,
1 [ ; o0 -
flz) = o /_Oo dk etk® /_OO da’ f(a')e~thne
which is the inverse Fourier transform of the Fourier transform of f, which gives the

Fourier inversion theorem. Note that when f(z) is discontinuous at x, the Fourier trans-
form gives

FHFUM(@) = 5(flz-) + f(z4)) (8.7)

which is analogous to the result for Fourier series.

§8.3 Properties of Fourier series

Recall the definition of the Fourier transform.

foy= [ Z f(@)e=™e dy
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Proposition 8.1 (Linearity)

The (inverse) Fourier transform is linear.

h(z) = Mf(z) + png(x) <= h(k) = Af(k) + ug(k)

Proposition 8.2 (Translation)
Translated functions transform to multiplicative factors.

h(z) = fle = X) <> h(k) = e " f(k)

Proof. This is because

Rk = [ o= Nemrdo = [ flg)e ) dy = e Fi

Proposition 8.3 (Frequency Shift)
Frequency shifts transform to translations in frequency space.

h(z) = € f(x) = h(k) = f(k —X)

Proposition 8.4 (Scaling)

(8.8)

(8.9)

(8.10)

A scalar multiple applied to the argument transforms into an inverse scalar multiple.

hz) = fOz) < h(k) = &f(i)

Proposition 8.5 (Multiplication by x)

Multiplication by « transforms into an imaginary derivative.

h(z) = 2f(x) < h(k) =if (k)
Proof. This is because

/OO zf(x)e e dx = _71(% /O:o f(z)e %= dy

—00
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Proposition 8.6 (Derivatives)

Derivatives transform into a multiplication by ik.

h(z) = f'(2) <= h(k) = ikf(k)

Proof. This is because we can integrate by parts and find

hi(k) = /_ O:O f(@)e ™ do = [f(z)e ]

=0

Proposition 8.7 (General duality)
g(@) = f(z) < §(k) = 2rf(-k)

Proof. Consider eq. (8.2) with mapping = — —x, we get
1 [ = ;
flea) =5 [ FR)e e di.
21 J—o
Now swap k and z, treating f now as a function in position space

k=5 [ Pyt do.

Thus
g(z) = f(z) < G(k) =2nf(~k)
Corollary 8.1
f(=2) = oS- FFN)(@)
Finally,
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Exercise 8.4. Verify these properties.

Example 8.2
Consider a function defined by

ra=f =

0 otherwise

for some a > 0. By the definition of the Fourier transform,

0o . a . @ 2
= / f(z)e~**dx = / e~k dg = / coskxdr = z sin ka (8.15)

—a

By the Fourier inversion theorem,

[ et sinkadk = f(a)
— e — Sln Ka = a5
T J_oo k
for x # a.
Now, in this expression, let z = 0 and let £ — . We arrive at the Dirichlet discontinuous formula.
- 5 a>0
/ SNAT 4y = zsgna: 0 a=0 (8.16)
0 x
-5 a<0

Here, we allow a < 0, so sin(—ax) = — sin az.

§8.4 Convolution theorem

We want to multiply Fourier transforms in the frequency domain (transformed space).
This is useful for filtering or processing signals.

h(k) = f(k)g(k)

Consider the inverse.

1er
— dk
=50 [T
1 . .
27 / (/ 7Zky dy) g(k)elk’x dk
1 .
(2 e Mg (k)e™ dk) dy
(1 Zk(ét ) dk) dy
2
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= / y)dy by eq. (8.9)
= (f*g)(z) (8.17)

where f g is called the convolution of f and g. By duality eq. (8.14), we also have

_ i(f*g)(k) (8.18)

() = f()glw) = h(k) = o- " Fwite - L

§8.5 Parseval’s theorem

Consider h(x) = g*(—x).

Let —x— 1y

= /_O:O gly)e ™ dy] )

*(k

Substituting this into the convolution theorem eq. (8.17), with g(z) — ¢*(—z), we have
(RHS is the inverse Fourier transform)

/_O:O fy)g*(y —x)dy = % /_O:o f(k)g*(k)eikx da

Taking x = 0 in this expression and mapping y — z, we find

| g @ds =5 [ Fogn o (8.19)

Equivalently,

(9.1) = 5 (5. F) (8.20)

So the inner product is conserved under the Fourier transform (up to a factor of 27).
Now, by setting ¢* = f*, we have

[ is@ae =5 [ |fw[ ax

This is Parseval’s theorem.
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§8.6 Fourier transforms of generalised functions

We can apply Fourier transforms to generalised functions by considering limiting distri-
butions. Consider the inversion

fz) = ( ( )(@)

f
{ / ” flu ik“du} e dk
—/ Rl

In order to reconstruct f(x) on the right hand side for any function f, we must have that
the bracketed term is §(x — u). So we identify

d(x—u) = QL /oo etF@=u) g
T J—00

6(x—u)

o If f(z) = 6(x),
= /OO S(z)e*®dr =1 (8.21)

This can be thought of as the Fourier transform of an infinitely thin Gaussian,
which becomes an infinitely wide Gaussian (a constant).

o If f(z) =1, then
fk) = / T etk g — 216 (k) (8.22)

This can also be found by the duality formula eq. (8.14).
o If f(z) = d(x — a), using eq. (8.9) we have

f(k) = e~ (8.23)

This is a translation of the original Fourier transform for the § function above.

§8.7 Trigonometric functions
Let f(z) = coswz = 1 (e™® + e~™7). Then,

fk) = 7(0(k +w) + d(k — w)) (8.24)

For f(z) = sinwz, we have
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Using duality eq. (8.14),

f(x)z%(é(&?—f—a)—i—&(:v—a)) — f(k) = coska
Fz) = %(5@ +a)—8(x—a)) — f(k) = sin ka

§8.8 Heaviside functions

Let H (z) be the Heaviside function, such that H(0) = 3. Then, H(z)+ H(—x) = 1forall
x and is cts at x = 0. We can take the Fourier transform of this and find by eq. (8.22)

H(k) 4+ H(—k) = 2m6(k) (%)
Recall that H'(z) = 6(z), eq. (6.7). Thus by egs. (8.13) and (8.21),

ikH (x) = 5(k) = 1 (1)
Since kd (k) = 0, the two equations for H can be consistent if we take

A (k) = 6(k) + % (8.25)

§8.9 Dirichlet discontinuous formula

Recall the Dirichlet discontinuous formula eq. (8.16):

) 3 a>0
° sin ax T
/ dzr = —-sgna=1<0 a=20
0 T 2
-5 a<0

We can rewrite this as

1 1 oo pikz
isgn:c:—/ € dk

21 J_oo 1k
since the cosine term divided by ik is odd. Hence,

f) = %sgnx — k) :% (8.26)

This is the preferred form for a Heaviside-type function when used in Fourier trans-
forms.
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§8.10 Solving ODEs for boundary value problems

Consider y’ — y = f(z) with homogeneous boundary conditions y — 0 as z — +oo.
Taking the Fourier transform of this expression, we find by eq. (8.13)

(—k*=1y=f
Thus, the solution is
o —fR) s
ylk) = 122 = F(R)g(k)

where g(k) = ﬁ Note that g(k) is the Fourier transform of g(z) = —%e"”", eq. (8.6).
Applying the convolution theorem eq. (8.17),

y(w) = [ flulglo — u)du
= —% /_O:O flwe Tl dy
= —% [/:O fu)e" * du + /xoo flu)e™™™ du]

This is in the form of a boundary value problem Green'’s function eq. (7.20). We can con-
struct the same results by constructing the Green’s function directly or by using inverse
fourier transform on y(k).

§8.11 Signal processing

Suppose we have an input signal Z(¢), which is acted on by some linear operator L, to
yield an output O(t). The Fourier transform of the input Z(w) is called the resolution.

I(w) = / - Z(t)e ™ dt (8.27)

—0o0

In the frequency domain, the action of Lin on Z(¢) means that Z(w) is multiplied by a
transfer function R (w) to yield outupt,

o) = /oo R(w)Z(w)e™! du (8.28)

:g .

The inverse Fourier transform of the transfer function, R, is called the response function,
which is given by

R(t) = % L O:o R(w)e™ duw (8.29)
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By the convolution theorem,
o(t) = / T(W)R(t — u) du

Suppose there is no input (Z(t) = 0) for ¢t < 0. By causality, there should be zero output
for the response function (R(t) = 0) for t < 0. Therefore, we require 0 < u < t and
hence

O(t) = /0 "T)R(t - u) du (8.30)

which resembles an initial value problem Green’s function eq. (7.26).

§8.12 General transfer functions for ODEs

Suppose an input-output relationship is given by a linear ODE (nth order).

LO(t) = (i: ai;;) O(t) = Z(t) (8.31)
=0

Here, Lin = 1. We want to solve this ODE using a Fourier transform.

(ap + ariw — asw? — aziw® 4+ - + ap(iw)")O(w) = T(w)
We can solve this algebraically in Fourier transform space. The transfer function is

- 1
R(w) = ot T o) (8.32)

We factorise the denominator to find partial fractions. Suppose there are J distinct roots
(tw — cj)ki, where k; is the algebraic multiplicity of the jth root, so Z}-Izl k; = n. So we
can write

Rw) =YY (8.33)

The I, terms are constant. To solve this, we must find the inverse Fourier transform of
(iw — a)~™. Recall that eq. (8.6a)

1 e t>0
Pt
ww—a 0 t<0
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for Rea < 0. So we will require Rec; < 0 for all j to eliminate exponentially growing
solutions. Note that for m = 2,

.d ( 1 ) 1
11— =
dw \iw — a (iw — a)?

and recall eq. (8.12)
F(tf(t) =iF (w)

Hence,

;—1( 1 )_ te >0
(i — a)? 0 t<0
Inductively, we arrive at

tmfl

o1 ((1> _ {m—lﬂeat >0 (8.34)

iw—a)m 0 t<0

We can therefore invert any transfer function to obtain the response function. Thus the
response function takes the form

J .
R(t) = rjmi.ecﬂ, t>0 (8.35)

and zero for ¢t < 0. We can now solve such differential equations, eq. (8.31), in Green’s

function form eq. (8.30), or directly invert R(w)Z(w) for a polynomial Z (w).

§8.13 Damped oscillator

We can use the Fourier transform method to solve the differential equation
Ly=y"+2py + * + )y = f(t)

where p > 0. Consider homogeneous boundary conditions y(0) = 3’(0) = 0. The
Fourier transform is

(iw)?g + 2ipwy + P* + ¢*)y = f

Hence,

. / ==
= ER
LA 2ipw + p* + ¢2 /
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We can invert this using the convolution theorem by inverting R.

v = [ Rt - )i ar

where the response function is

1 00 eiw(th)
R(t—71) = — d
(t=7) 2 /,oo P2+ ¢ + 2ipw — w? v

We can show that LR(t — 7) = §(t — 7) using eq. (8.23); in other words, R is the Green’s
function (Sheet 3, Q4).

§8.14 Discrete sampling and the Nyquist frequency

Suppose a signal h(t) is sampled at equal times ¢,, = nA with a time step A and values
hn, = h(ty) = h(nA), neZ (8.36)

The sampling frequency is therefore A™!, so the sampling angular velocity is ws; =
2 fs = QK’T.

Definition 8.2 (Nyquist Frequency)
The Nyquist frequency is the highest frequency actually sampled at A,

1
fe=g5x (8.37)

Suppose we have a signal gy with a given frequency f. We will write
, 1 ; 1 ;
_ _ 2mift+eo\ _ — 2mi ft+p - —2mift4+¢
gf(t) = Acos(2m ft + ) = Re (Ae ) =3 (Ae ) +3 (Ae ) (8.38)
where A € R. Note that this signal has two ‘frequencies’; a positive and a negative

frequency. The combination of these frequencies gives the full wave.

Suppose we sample g¢(t) at the Nyquist frequency, so f = f.. Then,
1
g5.(tn) = Acos <27r2AnA + gp)
= Acos(mn + @)
= Acosmncos ¢ + Asinmnsin g
= A cos(2m foty) (8.39)
where A’ = Acosp. This has removed half of the information about the wave; the

amplitude and the phase have become degenerate. We have lost phase/amplitude in-
formation, there is no longer any distinction between them. We can identify f, with — f.

91



when considering the remaining information; we say that the two frequencies are aliased
together.

Now, suppose we sample at greater than the Nyquist frequency, in particular f = f. +
0f > fo, where for simplicity we let § f < f.. As an exercise, show that

gr(tn) = Acos(2r(fe+ 0f)tn + )
= Acos(2n(fe — 0f)tn — @) (8.40)

So frequencies above the Nyquist frequency are reinterpreted after the sampling as a
frequency lower than the Nyquist frequency. This aliases f. + ¢ f with f. —df.

§8.15 Nyquist-Shannon sampling theorem

Definition 8.3 (Bandwith-Limited)

A signal ¢(t) is bandwidth-limited if it contains no frequencies above wpax =
27 fmax- In other words, g(w) = 0 for all |w| > wpax- In this case,

_ i R iwt o i Smerz Aty
g(t) = 5 /_oog(w)e dw = 5 /_ g(w)e™* dw (8.41)

Wmax

Suppose we set the sampling rate to the Nyquist frequency, so A = Qfﬁ Then,

1 Wmax -
g=otn) = o [ e g

Wmax

This is a complex Fourier series coefficient eq. (1.13) ¢, multiplied by “=2x, The Fourier
series is periodic in w with period 2wpax, not in space or time.

~ 7T - —imnw /w
Jper(w) = Z gneé [wmax (8.42)

Wmax

n=—oo

The actual Fourier transform g is found by multiplying by a top hat window function

T 1 < max
Ry =L =
0 otherwise
Hence,
3(w) = Gper(W)h(w) (8.43)

Note that this relation is exact. Inverting this expression,

g(t> ! /Oo gper(w)ﬁ(w)eiwt dw

zgioo
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Wmax . nm
Z Jn / exp (zw (t — )) dw
2wmax ne—o0 Wmax Wmax

Only the cosine term is even, hence

maxt -
Z . sin(w ™) (8.44)

2wmax Wmaxt — TN

n=—oo
Hence, g(t) can be written exactly as a combination of countably many discrete sample

points.

§8.16 Discrete Fourier transform

Suppose we have a finite number of samples

hpm = h(ty,) for t,, = mA, wherem =0,...,N —1 (8.45)
We will approximate the Fourier transform for N frequencies within the Nyquist fre-
quency f. = 5, using equally-spaced frequencies, given by A; = ﬁ in the range
—fe < f < fe. We could take the convention f, = nAy = 5 forn=—5,..., ];7 How-
ever, this overcounts the Nyquist frequency (which is aliased, eq. (8.39)), giving N + 1

frequencies instead of the desired V. Since frequencies above the Nyquist frequency are
aliased to below it, eq. (8.40):

N N
(3 +m)ar=to+sro (5 -m)ar=-(-a)
we can instead use the convention f,, = nA; = 5 for

n=0,....,N—1 (8.46)

This counts the Nyquist frequency only once.

The discrete FT at a frequency f,, becomes

h(fn) = [ O:o h(t)e 2Tt gy

N-1 ]
RA D By 2T ntm

m=0
N-1 ]
— A Z hme—szmn/N
= Aha(fn) (8.47)

where the function kg4 (f,) is the discrete Fourier transform.
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The matrix
[DFT]pp = ¢ 27N iy n=0,1,...,N -1 (8.48)

defines the discrete Fourier transform for the vector h = {h,,}. The discrete Fourier
transform is then

hq = [DFT]h
By inverting the discrete Fourier transform matrix, we find
17 1 7
h = [DFT] “hg = N[DFT] hg

since the inverse of the discrete Fourier transform matrix is its adjoint. The matrix is

built from roots of unity w = e~2"/N. So, for instance, n = 4 gives w = e 2"/ = —j
giving
1 1 1 1
1 —¢ -1 =1
[DFT] Tl -1 1 -1
1 ¢ -1 —i
The inverse discrete Fourier transform is
hin = (tm)
1 o[~ .
- h(w)emm dw
27 J oo
OO ~ .
:/ h f)e2mftm df
—0o0
1 N1 .
~ NN Z Ahd(fn)e%rzmn/N
n=0
1 N1 '
_ N hn62mmn/N
n=0
Hence, we can interpolate the initial function from its samples.
1 = y
o2mint/N
N Z TN
Parseval’s theorem becomes,
N-1
Z | |? = ]h ‘ (8.49)
m= =
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Exercise 8.5. Prove this.

The convolution theorem for g¢,,, hy, is

N-1
k=Y gmhk-m <= Tk = Grhk (8.50)

m=0

§8.17 Fast Fourier transform (non-examinable)

While the discrete Fourier transform is an order O(N?) operation, we can reduce this into
an order O(nlog N) operation. Such a simplification is called the fast Fourier transform.
We can split the discrete Fourier transform into even and odd parts, noting that wy =

e 2™/N implies w3, = e~ 27/ (N/2) = WN/2
. N-1
he =Y hawif
n=0
N/2-1 N/2-1
= Z Romwimk 4 Z hzm_i_lwg\?mﬂ)k
m=0 m=0
N/2-1 N/2-1
= D> hon(@R)™ ok D P (@R)™
m=0 m=0
N/2-1 N/2-1
= > hom(wne)™ Wl Y homsi(wnye)™
m=0 m=0

This algorithm iteratively reduces the Fourier transform’s complexity by a factor of two,
until the trivial case of finding the discrete Fourier transform of two data points.
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Part IV
PDEs on Unbounded Domains

§9 Method of characteristics

§9.1 Well-posed Cauchy problems

Solving partial differential equations depends on the nature of the equations in combin-
ation with the boundary or initial data. A Cauchy problem is the partial differential
equation for some function ¢ together with the auxiliary data (in ¢ and its derivatives)
specified on a surface (or a curve in two dimensions), which is called Cauchy data. For
a Cauchy problem to be well-posed, we require that

1. a solution exists (we do not have excessive auxiliary data);
2. the solution is unique (we do not have insufficient auxiliary data); and

3. the solution depends continuously on the auxiliary data.

§9.2 Method of characteristics

Consider a parametrised curve C given by Cartesian coordinates (z(s),y(s)). The tan-
gent vector is

- (52,5

We then define the directional derivative of a function ¢(x, y) by

de| _ da(s) ¢ | dy(s) Oy _
ds|c  ds 8x+ ds 8y_v VSOC (9-1)
Suppose v - Vi = 0 then ‘31—8 = 0 and hence ¢ is constant along the curve.
Suppose there exists a vector field
u=(a(z,y),5(z,y)) (9.2)

with a family of non-intersecting integral curves C' which fill the plane (or domain of
the function more generally), such that at a point (x,y) the integral curve has tangent
vector u(z,y).
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(‘_(x(s.t\,vjls,t\\

\
N\

/ .

Now, define a curve B by (z(t), y(t)) such that B is transverse to v; its tangent is nowhere
parallel to w.

w = (dﬁf)’ dgﬁ?) I (@, ), Blz,y)) = u

This can be used to parametrise the family of curves by labelling each curve C' with the
value of ¢ at the intersection point between it and B. Along the curve, we use s such that
s = 0 at the intersection. The integral curves (z(s,t),y(s,t)) satisfy

dic
ds

=a(e) 3= p) 93)

We can solve these equations to find a family of characteristic curves, along which ¢ re-
mains constant. This yields a new coordinate system (s, t) associated with a differential
equation we wish to solve.

§9.3 Characteristics of a first order PDE
Consider

0 0
alay) g+ BEy)5 =0 (94)

with Cauchy data on an initial curve B, defined by (z(t), y(t)):
p(a(t), y(t) = f(t) (9.5)
Note,

de
apg + foy =u- Vo= as o

This is exactly the directional derivative along the integral curve C, defined by u = (¢, 3),
which are called the characteristic curves of the PDE. Since fi—f = oy + By = 0 from

97



the original PDE eq. (9.4), the function ¢(z,y) is constant along this curve C. In other
words, the Cauchy data f(t¢) defined on B at s = 0 is propagated constantly along the
integral curves. This gives the solution

90(37t) - (p(l'(s,t), y(S,t)) = f(t) (96)

To obtain ¢ in the original coordinates, we need to transform from s, t-space into x, y-
space. Provided that the Jacobian J = x;ys — x5y: is nonzero, we can invert the trans-
formation and find s, t as functions of x, y. This gives

()0(‘/177 y) = f(t(‘rv y)) (97)

To solve such a PDE i.e. eq. (9.4) given eq. (9.5), we will typically use the following
steps.
1. Find the characteristic equations eq. (9.3), ?T:g = a, % = p.

2. Parametrise the initial conditions on
B(z(t),y(t)) (9.8)

3. Solve the characteristic equations to find z = z(s,t) and y = y(s, t) subject to the
initial conditions, eq. (9.8), at s = 0.

4. Solve the equation for ¢, eq. (9.4) with eq. (9.1), given by %f = apy + Py = 0,50
¢ is constant along the integral curves, giving ¢(s,t) = f(t), eq. (9.6).

5. Invert the relations s = s(x,y) and ¢t = t(z,y), then find ¢ in terms of z, y.

Example 9.1

Consider the equation

de(z,y)
dz =
such that
©(0,y) = h(y)

1. The characteristic equations are given by

d d

2. The initial curve B is given by

(z(t),y(t)) = (0,1) (1)
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3. Solving the characteristic equations (x),

rT=38 y=t
4. Thus,
de
35 =0 = #lst) =h(t) = o(z,y) = h(y)
Example 9.2
Consider

e*pr + oy =0; ¢(z,0) =coshzx
1. The characteristic equations are

dz
E—@, dis—]_ (*)

2. The initial conditions are
z(t) =t y(t) =0 (t)
We solve the characteristic equation subject to these initial conditions, giving
—e P =s+c(t); y=s+d(t)
s =0 (z =t) implies —e~* = ¢(t) and y = 0 = d(t). Hence

et=e"—5 yYy=s

3. Now,

i—f =0 = ¢(s,t) = cosht

4. Since s = y,e ! =y + e %, we have t = —log(y + e~ %). Thus,

o(z,y) = cosh [—log(y + e )]
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§9.4 Inhomogeneous first order PDEs

Suppose we now wish to solve

a(z,y)pe + B2, y) ey = v(z,y) (9.9)

with Cauchy data ¢(x(t),y(t)) = f(t) along a curve B. The characteristic curves are the
same as the homogeneous case eq. (9.4). However, the directional derivative no longer
vanishes:

d
F| =u-Ve=1zy) (9.10)
Slc

where ¢ = f(t) at s = 0 on B. So f(¢) is no longer propagated constantly across charac-
teristic polynomials, but is instead propagated according to the ODE in s eq. (9.10). We
must therefore solve this ODE along C before reverting to z, y coordinates.

Example 9.3

Consider
Pz + 20y = ye;  p(x,x) =sinz
1. The characteristic equation is given by

ds 7 ds
2. The initial conditions are

z(t) =y(t) =t (1)

3. From the characteristic equations,
r=s+c(t); y=2s+d(t)

Thus when s = 0 (1) implies,

So the solutions to the characteristics are

r=s+1t y=2s+t
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4. Now we solve

do _

=~ =ye® = (25 + t)e Tt
1 =T ve (2s +t)e

Note that %(2868) = 2e® + 2se”, so the solution is
o(s,t) = (25 — 2+ t)e*T + c(s)
for some constant term ¢(s). But ¢(0,¢) = sint, hence

sint = (t — 2)e +c(s) = p(s,t) = (25 — 2+ )’ +sint + (2 — t)e’

5. Inverting into z, y space, since s =y —x,t = 2z — y,

olz,y) =(y—2)e" + (y — 2z + 2)62:”7?” + sin(2z — y)

§9.5 Classification of second order PDEs

In two dimensions, the general second order PDE is

62()0 2 2

dy Oy

+ d(l‘,y)% + e(x’y)aiy + f(xay)SO(% y)

d +c<x,y>7*"

(9.11)

The principal part is given by

—1.T _ (I(l',y) b(ZE?y) km
etk =678k ) (502 20 (5
The PDE is classified by the properties of the eigenvalues of A.

1. If b — ac < 0, the equation is elliptic. The eigenvalues have the same sign. An
example is the Laplace equation, eq. (5.1).

2. If b? — ac > 0, the equation is hyperbolic. The eigenvalues have opposite signs. An
example is the wave equation, eq. (3.4).

3. If b* — ac = 0, the equation is parabolic, where at least one eigenvalue is zero. An
example is the heat equation, eq. (4.3).

Note that a differential equation may have different classifications at different points
(x,y) in space.
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§9.6 Characteristic curves of second order PDEs

A curve defined by f(x,y) = constant is a characteristic if

(£ #) (Z i) (ﬁ) =0 (9.12)

This is a generalisation of the first order case v - V f = 0 where u = («, ). The curve
can be written as y = y(x) by the chain rule.

L ) = Y N
Oz + Oy dx 0 fy dx (913)

Substituting into the quadratic form eq. (9.12),
a<dy>2 - Qb% +c=0
dx dz B
for which we have a quadratic solution given by

+ /b2 —
dy _ bE Vb —ac (9.14)
dx a
1. Hyperbolic equations have two such solutions, since b*> — ac > 0.
2. Parabolic equations have one solution.

3. Elliptic equations have no real characteristics.

§9.7 Characteristic coordinates

Transforming to characteristic coordinates u,v will set @ = 0 and ¢ = 0 in eq. (9.11).
Hence, the PDE will take the canonical form

0%

DY = -l
8u8v+ +=0 (9.15)

where the omitted terms are lower order, e.g. ¢, vy, ¢ ...

Example 9.4

Consider

—YPaz + Pyy =0 (*)

Here, a = —y,b = 0,c = 1 hence b* — ac = y. For y > 0, the equation is hyperbolic,
for y < 0 it is elliptic, and for y = 0 it is parabolic. Consider the characteristics for
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y > 0.

%_bi\/bz—ac_ii
dr a a VY

Hence,
2 3
/\/gdy::t/dx = §y2 +ax=Cy

Therefore, the characteristic curves are

2%_’_ 2
u = — X, V= —
gy T 3

Taking derivatives,

Up =15 Uy =Y Vo=-1; vy=/y
Hence,

Pz = Pully + Uz = Pu — Po

Yy = VY(Pu + ¢v)
Prr = Puu — 2901“) + Yuw

1
Pyy = Y(Puu + 20up + Vo) + m(@u + )

Substituting into the original PDE (x),
1
y 2

3 .
Note, u +v = %yi, hence we have the canonical form

1
dpuy + 1)) (‘Pu + ‘Pv) =0

6(u +

§9.8 General solution to wave equation

The wave equation, eq. (3.4), is
1P 2%
2 ot2 Oz

We wish to solve this with initial conditions

80(1:’0) = f(z)a th(l'vo) = g($)

=0
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Here, a = C%, b= 0,c = —1hence b> — ac > 0. The characteristic equation is

dz 0£,/0+%

=V ¢ — ¢
dt CLQ

Hence the characteristic coordinates are
u=x—ct; v=x-+ct
This yields the canonical form

0%

— 17
oudv 0 (9.17)

This may be integrated directly to find

L =F@) = ¢=G@)+ [ Fy)dy=Gl)+ H)

Imposing the initial conditions at ¢t = 0, we find v = v = z and
G(z)+ H(z) = f(z); —cG'(x)+ cH'(z) = g(2)
Differentiating the first equation, we find
G'(z) + H'(x) = f'(z)

We can combine this with the second equation to give

(@) = 5 (@) + 19(0)) = H@) = 5(F@) - FO)+ 5 [ o) dy
Similarly,
Ga) = 5(F@0) - fo@)) = Gla) =57 - 70) ~ 5 [ o)y

The final solution is therefore

1 1 x+ct
o(x,t) = G(x —ct) + H(x + ct) = i(f(x —ct)+ f(z+ct)) + % /x_ct g(y)dy (9.18)

Domain of dependence
Waves propagate at a velocity ¢, hence (z, t) is fully determined by values of f, g in the
interval [z — ct, z + ct]. This is the same idea as light cones in special relativity.
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§10 Solving partial differential equations with Green’s functions

§10.1 Diffusion equation and Fourier transform

Recall the heat equation, eq. (4.3), for a conducting wire given by

00 0?0
a(z,t) D8 5 (2,t) =0 (10.1)

with initial conditions ©(z,0) = h(z) and boundary conditions © — 0 as z — +o0.
Taking the Fourier transform with respect to = using eq. (8.13),

%(:)(k:,t) = —Dk*O(k, t)
Integrating, we find
O(k,t) = Ce PF
The initial conditions give O(k, 0) = h(k) and therefore
O(k,t) = h(k)e K

We take the inverse Fourier transform to find

.’L’ t / h Dk t ka dk
T om

FT of Gaussian

Hence, by the convolution theorem eq. (8.17),

(z —u)?
O(z,t) = \/m exp( 1D ) du
- / w)Sa( — u, ) du (10.2)

where the fundamental solution is

1 22
Sd(l',t) = mexp _ﬁ (103)

which is the Fourier transform of exp(—Dk?t) (you should know how to derive eq. (10.3)
using derivatives or by completing the square). This is also known as the diffusion
kernel or the source function.

Note. With localised initial conditions O(z,0) = ©¢d(x), the solution is exactly the fun-
damental solution:

O(x,t) = ©pSy(x,t) =

60 2 x
—n?); n= 10.4
VAar Dt exp( 1 ) 7 2v Dt ( )

where 7 is the similarity parameter. Le. for ¢ > 0 spreads smoothly as a Gaussian.
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§10.2 Gaussian pulse for heat equation

Suppose that the initial conditions for the heat equation are given by

f(z) = \/z@oe_az2

Then, our eq. (10.2) gives

(S} o] [ _ 2
O(z,t) = \/% exp | —au? — (3:4D1:) ] du
— o
S © [ (1+4aDt)u?—2 2
_ _6ova exp ~ (1 +4aDt)u rutat|
VirDt oo | 4Dt
Opva [ [ 1+4aDt ( x )} —az?
= exp|— U — exp|———— | du
V42Dt J-oo L 4Dt 1+ 4aDt 1+ 4aDt

Recall eq. (6.3),

— 00

/Oo exp [W] du = o7

The integral above is a Gaussian, so its solution can be read off directly as

2

—ar ] (10.5)

_ Oova
O(z,1) = 1+ 4aDt

7(1+ 4w2Dt)

exp

So the width of the Gaussian pulse will get wider over time, according to 0% ~ ¢, as it
evolves according to the heat equation. The area is constant, so heat energy is conserved
in the system.

§10.3 Forced diffusion equation

Consider the equation

0 9%
il D= — 10.
£6(z,1) — D= = f(a,1) (10.6)
subject to homogeneous initial conditions ©(x, 0) = 0. We construct a two-dimensional
Green'’s function G(z, t; £, 7) such that

0 9*G

5.C @ t) = D5 = b(z = )d(t — 7) (10.7)
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subject to the same homogeneous boundary conditions G(z,0;&,7) = 0. Consider the
Fourier transform with respect to .

%f + DE*G = e *5(t — 1)

Dk

We can solve this using an integrating factor e “* and integrating with respect to time.

SinceG =0att =0,

8 24~ —q 2
a[eDk' tG} —e k&é+DEk t(;(t o 7_)
YO 1 prev Al qw [ —ikerDR2t <oy /
/0@[6 G}dt—/oe ot —7)dt

~ ) t ,
DR e—zk&/ PR S — 1)
0
DRty e—ikgeDk2TH(t —7)
where H is the Heaviside step function. Thus,

Gk, t;&,7) = e e PR F (¢ — 7)

The inverse Fourier transform gives the Green’s function.

H(t — 0 ,
Glx, t¢,7) = (t% ) [ e~ DR (=T ik

This is a Gaussian; by changing variables into 2/ = z — { and ¢’ =t — 7 we find

HE) (% s —pioe . H(E) (')
Glo.t6m) == /_ooek e Pt dk = Dt YT 4Dr

Converting back,
ooy HE-T) (-8 | _
Gz, t;¢,7) = m exp [_ZlD(t—T)] =H({t—7)Sq(x—¢&t—1) (10.8)

where S, is the fundamental solution in eq. (10.3).

Thus, the general solution is

O, t) = [ar [~ a6l e nfET)

Let & = u, then

O(z,t) = /Ot dr /_O:O du f(u, 7)Sg(x — u,t — 1) (10.9)
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§10.4 Duhamel’s principle

In the above equation, omitting the integral over time, this is exactly the solution as
found earlier with initial conditions at ¢ = 7, which was

O(z,t) = /_o:o du f(u)Sg(x — u,t — 1)

The forced PDE with homogeneous boundary conditions can be related to solutions of
the homogeneous PDE with inhomogeneous boundary conditions. The forcing term
f(z,t) att = 7 acts as an initial condition for subsequent evolution. Thus, the solution,
eq. (10.9), is a superposition of the effects of the initial conditions integrated over 0 <
7 < t. This relation between the homogeneous and inhomogeneous problems is known
as Duhamel’s principle.

§10.5 Forced wave equation

Consider the forced wave equation, given by

o _ 200 _ F(z, 1) (10.10)

o2~ 922
with p(z,0) = ¢¢(x,0) = 0. We construct the Green’s function using
0’°G  ,0°G
with G(z,0) = G¢(z,0) = 0. We take the Fourier transform with respect to =, and find
PG 50 —ike
W‘FCZCG—@ (5(t—7)

We can solve this by inspection by comparing with the corresponding initial value
problem Green'’s function eq. (7.26) which has homogeneous solution sin kc(t — 7) as
G(z,0) =0, and find

=~ 0 t<T
={ s
—ik ke(t—7)
L t>7
Using the Heaviside function.
G o emmeSinkelt =7)

ke

We invert the Fourier transform.

Gla,t;€,7) = fI(t_T)/” eik(mg)SinkC(kt—ﬂdk

2me
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Let A =z —¢,and B = ¢(t — 7). By oddness of sine, only the cosine term of the complex
exponential remains. Noting the similarity to the Dirichlet discontinuous function,

Gl ti€,7) = H(;; T) /OOO cos(k:A)ksin(kB) dk
_H(t—71) [*®sink(A+ B) —sink(A - B)
- 2r7e /0 k dk
= H(iL;T)[sgn(A + B) —sgn(A — B)]

by eq. (8.16). Since the H(t — 1) term is nonzero only for ¢ > 7, we must have B =
¢(t — 1) > 0. The only way that the bracketed term can be nonzero is when |A| < B; so
|z — &| < ¢(t— 7). This is the domain of dependence as found before, demonstrating the
causality of the relation. Hence,

Gla,t:6,7) = 5 Hlelt — 1)~ |z — €]) (10.11)
b - o= EE
cT

x-c(t-1) x x+C(4-1)

Thus, the solution is

plat) = [Tar [ ac e 06 te
1 t z4c(t—T)
= /0 dr /x e e (10.12)

Exercise 10.1. Relate eq. (10.12) to D’Alembert’s solution with ICs eq. (9.18) att = 0, ¢ =
0, pr = g(x) as an example of Duhamel’s principle.

§10.6 Poisson’s equation

Consider

V2p = —p(r) (10.13)
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defined on a three-dimensional domain D, with Dirichlet boundary conditions ¢ = 0
on a boundary 0D.

§10.6.1 Fundamental solutions

The Dirac ¢ function, when defined in R?, has the following properties.
1. 6(r—r")=0forall r #1/;
2.

{fDé(r—r’)d3r—1 r'eD (10.14)

0 otherwise

3. p f(r)o(r — 2"y d3r = f(r').

First, we consider D = R3 with the homogeneous boundary conditions that G — 0 as
||7|| — oco. This is known as the free-space Green’s function, denoted Grg,

V2Grs(r,r') = 8(r — 1) (10.15)

The potential here is spherically symmetric, so the Green’s function is a function only of
the distance between the point and the source, i.e. G(r,r") = G(||r — ’||). Without loss
of generality, let v’ = 0, so G is a function only of the radius, now denoted r. Integrating
the left hand side of Poisson’s equation, eq. (10.15), over a ball B with radius r around
zero, we find

/ V2Gps d¥r — / VG -1 dS = / 9Grs 2 4q)
B OB oB Or
where d(2 is the angle element. This gives

or

The right hand side of Poisson’s equation gives unity by eq. (10.14), since zero is con-
tained in the ball. Therefore,

0Grs 1 —1
or 4mr? FS ™ r te

Since G — 0 as r — oo, we must have ¢ = 0. The fundamental solution is therefore the
free-space Green’s function given by

/ V2Gpg &r = 4nr
B

-1
G(r;r') = —— 10.16
(7",7") 47’(”7"—’/“/” ( )
Thus, Poisson’s equation is solved by

CI)(”* 1/ p(rl) d3’l”/

dm Jrs =]
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§10.7 Green’s identities

Consider scalar functions ¢, 1) which are twice differentiable on a domain D. By the
divergence theorem, Green’s first identity is

/DV (V) dPr = /D (V% + Vi V) d¥r = /6D OV -1 dS (10.17)

Switching 1) and ¢ and subtracting from the above, we arrive at Green's second identity,
where gﬁ =V -

/8D (¢?f§ - gz) ds = /D (o924 — V%) d’r (10.18)

Suppose we remove a ball B.(r’) from the domain. Without loss of generality let ' = 0.
Let ¢ be a solution to Poisson’s equation, so V29 = —p and let 1 be the free-space Green'’s
function. Thus, the right hand side of the second identity becomes

/ (gp VQGFS —GFSVng) dBr = / Grsp d3r
D\B. \ e D\B.
The left hand side is

J0GFs 3<P) ( OGFs 3@)
/aD (‘p on  Oman ) | \PTan Oy, )9

For the second integral, we take the limit as ¢ — 0. Let ¢ be regular, and let % be the

average value and g—z be the average derivative. This integral then becomes

~1 1 Jp 5
5 -t 19wy, _
<¢47752 4dme 8ﬁ> me” = —(0)

For general ' we instead get —p(r”).

Combining the above, we find Green’s third identity, which is

o) = [ Grstrir) o) @r+ [ (o5 () — Grs(rin) G20 ) s

(10.19)

The second integral provides the ability to use inhomogeneous boundary conditions

§10.8 Dirichlet Green’s function

We will solve Poisson’s equation V2 = —p on D with inhomogeneous boundary con-
ditions ¢(r) = h(r) on 0D. The Dirichlet Green’s function satisfies
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1. V2G(r;r") =0 forall r # 1/;
2. G(r;7") =00n 0D;

3. G(r;r") = Ggs(r; ')+ H(r; ") where H satisfies Laplace’s equation, the homogen-
eous version of Poisson’s equation, for all » € D.

Green'’s second identity, eq. (10.18), with V2¢ = —p, V2H = 0 gives

o (¢G5 157 ) a5 = [ o ®

Now, we set Gys = G — H into Green'’s third identity, eq. (10.19), to find

All of the H terms can be cancelled by substituting in (). Now, given G = 0, = h on
0D, we have

/ Gl —pr) &r+ [ hr)2CT) 45 (10.20)
oD on

This is the general solution. The first integral is the Green’s function solution, and the
second integral yields the inhomogeneous boundary conditions.

Exercise 10.2. Use eq. (10.18) to show that the Green’s function is symmetric (3rd iden-
tity)

G(r,) =G0 r), Vr#7r.
§10.9 Neumann Green’s Function

For Neumann B.Cs, specifying 6—“” k(r) on 0D we have

/ Gl (—p(r) &Pr + [ Glrir')(—k(r))dS (10.21)
oD

§10.10 Method of images for Laplace’s equation
For symmetric domains D, we can construct Green’s functions with G = 0 on 9D by can-

celling the boundary potential out by using an opposite ‘mirror image’ Green’s function
placed outside the domain.
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§10.10.1 Laplace’s equation on half-space

Consider Laplace’s equation V2o = 0 on half of R3, in particular, the subset of R? such
that z > 0. Let p(z,y,0) = h(z,y) and ¢ — 0 as ||r|| — oo. The free space Green’s
function satisfies Grg — 0 as ||r|| — oo, but does not satisfy the boundary condition
that Gpg = 0 at z = 0. For Gps at ' = (2/,¢/, '), we will subtract a copy of Gpg located
atr” = (2/,y', —7%). This gives
—1 -1

Amlr —v')  Axmlr — 1|
B -1 1
R ) L Ty P EAM e (e L) (v e PR 2
Hence G((z,y,0),r") = 0, so this function satisfies the Dirichlet boundary conditions on
all of the boundary 9D. We have

G(r,r') =

aG 8G _1 z — Z/ 2 + Z/
O l—y 02|y 4m - 10.22
Olemo O2le=o 47 <|7“—7“’|3 !7“—1"’|3> (10-22)
z —3/2
= (=2 + )"+ (2)°)

The solution is then given by eq. (10.20) (no sources),

o2y, 7) QW// (@ =)+ (y - y)+(')2}_3/2h(:c,y)dxdy (10.23)

§10.11 Method of images for wave equation

Consider the one-dimensional wave equation
¢ =" = fl,1)
with Dirichlet boundary conditions (0, t) = 0. We want to solve for z > 0.
We create matching Green’s functions from eq. (10.11) with opposite sign centred at
—¢.
1 1
Glz,t:8,7) = 5 H(c(t —7) — |z —&]) = o H(e, (t = 7) — [a +£])

We can replace the addition of the two terms with a subtraction to instead use Neumann
boundary conditions.

Suppose we wish to solve the homogeneous problem with f = 0 for initial conditions
of a Gaussian pulse. Here, for z > 0 we have

o(x,t) = exp[—(x —&+ ct)ﬂ — exp [—(—m -+ ct)ﬂ (10.24)

The solution travels to the left, cancelling with the image at t = %, which emerges and
travels right as the reflected wave.
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